Haiping Yang, Zhiqiang Chen, Yi Zhang, Biao Liu, Yang Yang, Ziyue Tang, Yingquan Chen, Hanping Chen
{"title":"Catalytic effect of K and Na with different anions on lignocellulosic biomass pyrolysis","authors":"Haiping Yang, Zhiqiang Chen, Yi Zhang, Biao Liu, Yang Yang, Ziyue Tang, Yingquan Chen, Hanping Chen","doi":"10.1007/s11705-024-2492-3","DOIUrl":null,"url":null,"abstract":"<div><p>Alkali metals (AMs) play an important role in biomass pyrolysis, and it is important to explore their catalytic effects so to better utilize biomass pyrolysis. This study analyzed the catalytic influence of K and Na with different anions (Cl<sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, and CO<sub>3</sub><sup>2−</sup>) on biomass pyrolysis, and explored the influence on the pyrolytic mechanism. AM chlorides (NaCl and KCl), sulfates (Na<sub>2</sub>SO<sub>4</sub> and K<sub>2</sub>SO<sub>4</sub>) and carbonates (Na<sub>2</sub>CO<sub>3</sub> and K<sub>2</sub>CO<sub>3</sub>) were mixed with cellulose and bamboo feedstocks at a mass ratio of 20 wt %, in order to maximize their potential on <i>in situ</i> upgrading of the pyrolysis products. AM chlorides had little effect on the pyrolysis products, whereas sulfates slightly promoted the yields of char and gas, and had a positive effect on the composition of the gaseous and liquid products. Carbonates noticeably increased the yields of the char and gases, and improved the C content of the char. Besides, AM salt catalysis is an effective method for co-production of bio-oil and porous char.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2492-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Alkali metals (AMs) play an important role in biomass pyrolysis, and it is important to explore their catalytic effects so to better utilize biomass pyrolysis. This study analyzed the catalytic influence of K and Na with different anions (Cl−, SO42−, and CO32−) on biomass pyrolysis, and explored the influence on the pyrolytic mechanism. AM chlorides (NaCl and KCl), sulfates (Na2SO4 and K2SO4) and carbonates (Na2CO3 and K2CO3) were mixed with cellulose and bamboo feedstocks at a mass ratio of 20 wt %, in order to maximize their potential on in situ upgrading of the pyrolysis products. AM chlorides had little effect on the pyrolysis products, whereas sulfates slightly promoted the yields of char and gas, and had a positive effect on the composition of the gaseous and liquid products. Carbonates noticeably increased the yields of the char and gases, and improved the C content of the char. Besides, AM salt catalysis is an effective method for co-production of bio-oil and porous char.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.