Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction

IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR 结构化学 Pub Date : 2024-08-13 DOI:10.1016/j.cjsc.2024.100415
Yuxiang Zhang , Jia Zhao , Sen Lin
{"title":"Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction","authors":"Yuxiang Zhang ,&nbsp;Jia Zhao ,&nbsp;Sen Lin","doi":"10.1016/j.cjsc.2024.100415","DOIUrl":null,"url":null,"abstract":"<div><div>The electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) represents an effective way to address energy crises and environmental issues by converting CO<sub>2</sub> into valuable chemicals. Single-atom catalysts (SACs) can achieve excellent catalytic activity in CO<sub>2</sub>RR. However, the study of CO<sub>2</sub>RR on SACs still poses significant challenges, especially in terms of controlling the selectivity towards the deep product such as CH<sub>4</sub> and CH<sub>3</sub>OH. Herein, we employ density functional theory (DFT) calculations to investigate the CO<sub>2</sub>RR on Cu SAC supported on N-doped graphene (Cu-N/C) and explore the role of N dopants on the CO<sub>2</sub>RR performance. Compared to Cu SACs supported on N-doped defective graphene with double vacancy (Cu-N/C-DV), Cu SACs supported on N-doped defective graphene with single vacancy (Cu-N/C-SV) can effectively convert CO<sub>2</sub> into the deeply reduced C<sub>1</sub> products, including CH<sub>4</sub> and CH<sub>3</sub>OH, thus further indicating that Cu-N/C-SV has a stronger interaction with ∗CO, which is conducive to the deep reduction of ∗CO. Increasing the coordination number of N atoms or the proximity of doping site to the Cu active site can effectively enhance the stability of catalyst and promote the adsorption of ∗CO on Cu-N/C-SV. However, this also increases the free energy of the formation of ∗CHO intermediate. The results suggest that CuC<sub>3</sub>-N<sub>m</sub>, which contains a N atom in the second coordination shell (meta-position) of Cu SACs, has the best electrocatalytic performance of CO<sub>2</sub>RR in terms of both selectivity and catalytic activity, not only contributing to an in-depth understanding of the reaction mechanism of CO<sub>2</sub>RR on SACs but also providing insights into the design of SACs for efficient CO<sub>2</sub>RR.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 11","pages":"Article 100415"},"PeriodicalIF":5.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124002800","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic CO2 reduction reaction (CO2RR) represents an effective way to address energy crises and environmental issues by converting CO2 into valuable chemicals. Single-atom catalysts (SACs) can achieve excellent catalytic activity in CO2RR. However, the study of CO2RR on SACs still poses significant challenges, especially in terms of controlling the selectivity towards the deep product such as CH4 and CH3OH. Herein, we employ density functional theory (DFT) calculations to investigate the CO2RR on Cu SAC supported on N-doped graphene (Cu-N/C) and explore the role of N dopants on the CO2RR performance. Compared to Cu SACs supported on N-doped defective graphene with double vacancy (Cu-N/C-DV), Cu SACs supported on N-doped defective graphene with single vacancy (Cu-N/C-SV) can effectively convert CO2 into the deeply reduced C1 products, including CH4 and CH3OH, thus further indicating that Cu-N/C-SV has a stronger interaction with ∗CO, which is conducive to the deep reduction of ∗CO. Increasing the coordination number of N atoms or the proximity of doping site to the Cu active site can effectively enhance the stability of catalyst and promote the adsorption of ∗CO on Cu-N/C-SV. However, this also increases the free energy of the formation of ∗CHO intermediate. The results suggest that CuC3-Nm, which contains a N atom in the second coordination shell (meta-position) of Cu SACs, has the best electrocatalytic performance of CO2RR in terms of both selectivity and catalytic activity, not only contributing to an in-depth understanding of the reaction mechanism of CO2RR on SACs but also providing insights into the design of SACs for efficient CO2RR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺氮改造铜单原子催化剂的配位环境,实现二氧化碳深度还原
电催化一氧化碳还原反应(CORR)通过将一氧化碳转化为有价值的化学品,是解决能源危机和环境问题的有效途径。单原子催化剂(SAC)可在 CORR 中实现优异的催化活性。然而,在 SACs 上进行 CORR 的研究仍面临重大挑战,尤其是在控制对 CH 和 CHOH 等深度产物的选择性方面。在此,我们采用密度泛函理论(DFT)计算方法研究了掺杂 N 的石墨烯(Cu-N/C)支撑的 Cu SAC 上的 CORR,并探讨了掺杂 N 对 CORR 性能的影响。与支撑在掺杂 N 的双空位缺陷石墨烯(Cu-N/C-DV)上的 Cu SAC 相比,支撑在掺杂 N 的单空位缺陷石墨烯(Cu-N/C-SV)上的 Cu SAC 能有效地将 CO 转化为深度还原的 C 产物,包括 CH 和 CHOH,从而进一步表明 Cu-N/C-SV 与 ∗CO 的相互作用更强,有利于 ∗CO 的深度还原。增加 N 原子的配位数或掺杂位点与 Cu 活性位点的距离,可有效提高催化剂的稳定性,促进 ∗CO 在 Cu-N/C-SV 上的吸附。然而,这也增加了形成 ∗CHO 中间体的自由能。研究结果表明,在 Cu SACs 的第二配位层(元位)上含有一个 N 原子的 CuC-N 在选择性和催化活性方面都具有最佳的 CORR 电催化性能,这不仅有助于深入理解 CORR 在 SACs 上的反应机理,还为设计用于高效 CORR 的 SACs 提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
结构化学
结构化学 化学-晶体学
CiteScore
4.70
自引率
22.70%
发文量
5334
审稿时长
13 days
期刊介绍: Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.
期刊最新文献
Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation Structural determination and exotic resistive behaviour of α-RuI3 under high-pressure Printable magnetoresistive sensors: A crucial step toward unconventional magnetoelectronics Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1