{"title":"DS$^{2}$PN: A Two-Stage Direction-Aware Spectral-Spatial Perceptual Network for Hyperspectral Image Reconstruction","authors":"Tiecheng Song;Zheng Zhang;Kaizhao Zhang;Anyong Qin;Feng Yang;Chenqiang Gao","doi":"10.1109/TCI.2024.3458421","DOIUrl":null,"url":null,"abstract":"Coded aperture snapshot spectral imaging (CASSI) systems are designed to modulate and compress 3D hyperspectral images (HSIs) into 2D measurements, which can capture HSIs in dynamic scenes. How to faithfully recover 3D HSIs from 2D measurements becomes one of the challenges. Impressive results have been achieved by deep leaning methods based on convolutional neural networks and transformers, but the directional information is not thoroughly explored to reconstruct HSIs and evaluate the reconstruction quality. In view of this, we propose a two-stage direction-aware spectral-spatial perceptual network (DS\n<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\nPN) for HSI reconstruction. In the first stage, we design a frequency-based preliminary reconstruction subnetwork to roughly recover the global spectral-spatial information of HSIs via frequency interactions. In the second stage, we design a multi-directional spectral-spatial refinement subnetwork to recover the details of HSIs via directional attention mechanisms. To train the whole network, we build a pixel-level reconstruction loss for each subnetwork, and a feature-level multi-directional spectral-spatial perceptual loss which is specially tailored to high-dimensional HSIs. Experimental results show that our DS\n<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\nPN outperforms state-of-the-art methods in quantitative and qualitative evaluation for both simulation and real HSI reconstruction tasks.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"1346-1356"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10675450/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Coded aperture snapshot spectral imaging (CASSI) systems are designed to modulate and compress 3D hyperspectral images (HSIs) into 2D measurements, which can capture HSIs in dynamic scenes. How to faithfully recover 3D HSIs from 2D measurements becomes one of the challenges. Impressive results have been achieved by deep leaning methods based on convolutional neural networks and transformers, but the directional information is not thoroughly explored to reconstruct HSIs and evaluate the reconstruction quality. In view of this, we propose a two-stage direction-aware spectral-spatial perceptual network (DS
$^{2}$
PN) for HSI reconstruction. In the first stage, we design a frequency-based preliminary reconstruction subnetwork to roughly recover the global spectral-spatial information of HSIs via frequency interactions. In the second stage, we design a multi-directional spectral-spatial refinement subnetwork to recover the details of HSIs via directional attention mechanisms. To train the whole network, we build a pixel-level reconstruction loss for each subnetwork, and a feature-level multi-directional spectral-spatial perceptual loss which is specially tailored to high-dimensional HSIs. Experimental results show that our DS
$^{2}$
PN outperforms state-of-the-art methods in quantitative and qualitative evaluation for both simulation and real HSI reconstruction tasks.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.