Rose Beia, Alfred Wassermann, Sebastian Raps, Jerry Mayhew, Michael Uder, Wolfgang Kemmler
{"title":"Developing Accurate Repetition Prediction Equations for Trained Older Adults with Osteopenia","authors":"Rose Beia, Alfred Wassermann, Sebastian Raps, Jerry Mayhew, Michael Uder, Wolfgang Kemmler","doi":"10.3390/sports12090233","DOIUrl":null,"url":null,"abstract":"The aim of this study was to evaluate prediction equations to estimate 1RM in different exercises in older men and women with osteopenia/osteoporosis. Forty well-trained older women and men (73 ± 8 years) with osteopenia/osteoporosis performed 1RM dynamic and isometric maximum strength tests on resistance devices. In addition, each participant performed repetitions-to-fatigue (RTF) in the 5–8RM, 9–12RM, and 13–16RM zones. After evaluating the predictive performance of available 1RM prediction equations from the literature, new prediction equations were developed for all seven exercises. One of the available equations that focus on postmenopausal women already acceptably predicted 1RM from RTF for all but one exercise. Nevertheless, new exercise-specific prediction equations based on a cubic polynomial most accurately predict 1RM from RTF in the 5–8 reps range with mean absolute differences between predicted and actual 1RM of 3.7 ± 3.7% (leg-press) to 6.9 ± 5.5% (leg flexion) that is roughly within the acceptable coefficient of variation. For some exercises, the inclusion of the isometric maximum strength tests slightly increases the prediction performance of the 5–8RM. In conclusion, the present prediction equation accurately estimates 1RM in trained, older women and men with osteopenia/osteoporosis. Further evaluation of this new equation is warranted to determine its applicability to different age groups and populations.","PeriodicalId":53303,"journal":{"name":"Sports","volume":"59 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sports12090233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to evaluate prediction equations to estimate 1RM in different exercises in older men and women with osteopenia/osteoporosis. Forty well-trained older women and men (73 ± 8 years) with osteopenia/osteoporosis performed 1RM dynamic and isometric maximum strength tests on resistance devices. In addition, each participant performed repetitions-to-fatigue (RTF) in the 5–8RM, 9–12RM, and 13–16RM zones. After evaluating the predictive performance of available 1RM prediction equations from the literature, new prediction equations were developed for all seven exercises. One of the available equations that focus on postmenopausal women already acceptably predicted 1RM from RTF for all but one exercise. Nevertheless, new exercise-specific prediction equations based on a cubic polynomial most accurately predict 1RM from RTF in the 5–8 reps range with mean absolute differences between predicted and actual 1RM of 3.7 ± 3.7% (leg-press) to 6.9 ± 5.5% (leg flexion) that is roughly within the acceptable coefficient of variation. For some exercises, the inclusion of the isometric maximum strength tests slightly increases the prediction performance of the 5–8RM. In conclusion, the present prediction equation accurately estimates 1RM in trained, older women and men with osteopenia/osteoporosis. Further evaluation of this new equation is warranted to determine its applicability to different age groups and populations.