Saman Bagherpour, Patricia Vázquez, Mariano Redondo‐Horcajo, Teresa Suárez, José Antonio Plaza, Lluïsa Pérez‐García
{"title":"Water‐Dispersible BODIPY Multifunctionalized Silicon Oxide Nanoparticles for Glutathione Sensing","authors":"Saman Bagherpour, Patricia Vázquez, Mariano Redondo‐Horcajo, Teresa Suárez, José Antonio Plaza, Lluïsa Pérez‐García","doi":"10.1002/ppsc.202400134","DOIUrl":null,"url":null,"abstract":"Glutathione (GSH), a thiol containing small peptide, plays pivotal roles in maintaining cellular redox balance, metabolism, detoxification, and scavenging of free radicals. Aberrant GSH levels in cells and tissues are associated with various disorders, underscoring the importance of accurate GSH detection for clinical diagnosis and therapy monitoring. Several molecular probes have been designed as fluorescent‐based GSH sensors. However, their water insolubility and the need of using organic cosolvents hinder their applicability on biological samples. Alternatively, nanomaterials have proven to be highly promising for boosting the precision of treatments and enhancing the accuracy of diagnosing diseases, thanks to their compatibility with biological environments and improved cell uptake. Here, the synthesis and characterization of a boron‐dipyrromethene (BODIPY)‐based probe (PB) are reported, incorporating a fluorescent BODIPY core, chlorine substituents for reaction with GSH, and a linking moiety for conjugation to the surface of silicon oxide nanoparticles (SONPs). Functionalized SONPs with PB are also characterized at the nanoscale using high‐resolution transmission electron microscopy (HR‐TEM), dynamic light scattering (DLS), Zeta potential, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), UV–Vis absorption, and fluorescence spectroscopies, confirming the surface functionalization and water‐dispersibility of functionalized SONPs with PB. GSH sensing is evaluated in aqueous solution, conjugated to SONPs, and in living cells, showing promising potential for ratiometric GSH detection.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"10 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202400134","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Glutathione (GSH), a thiol containing small peptide, plays pivotal roles in maintaining cellular redox balance, metabolism, detoxification, and scavenging of free radicals. Aberrant GSH levels in cells and tissues are associated with various disorders, underscoring the importance of accurate GSH detection for clinical diagnosis and therapy monitoring. Several molecular probes have been designed as fluorescent‐based GSH sensors. However, their water insolubility and the need of using organic cosolvents hinder their applicability on biological samples. Alternatively, nanomaterials have proven to be highly promising for boosting the precision of treatments and enhancing the accuracy of diagnosing diseases, thanks to their compatibility with biological environments and improved cell uptake. Here, the synthesis and characterization of a boron‐dipyrromethene (BODIPY)‐based probe (PB) are reported, incorporating a fluorescent BODIPY core, chlorine substituents for reaction with GSH, and a linking moiety for conjugation to the surface of silicon oxide nanoparticles (SONPs). Functionalized SONPs with PB are also characterized at the nanoscale using high‐resolution transmission electron microscopy (HR‐TEM), dynamic light scattering (DLS), Zeta potential, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), UV–Vis absorption, and fluorescence spectroscopies, confirming the surface functionalization and water‐dispersibility of functionalized SONPs with PB. GSH sensing is evaluated in aqueous solution, conjugated to SONPs, and in living cells, showing promising potential for ratiometric GSH detection.
期刊介绍:
Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices.
Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems.
Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others.
Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.