Analyzing two-dimensional cellular detonation flows from numerical simulations with proper orthogonal decomposition and Lagrangian descriptors

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Visualization Pub Date : 2024-08-14 DOI:10.1007/s12650-024-01024-7
Chian Yan, Yifan Lyu, Ahmed Darwish, Lyes Kadem, Hoi Dick Ng
{"title":"Analyzing two-dimensional cellular detonation flows from numerical simulations with proper orthogonal decomposition and Lagrangian descriptors","authors":"Chian Yan, Yifan Lyu, Ahmed Darwish, Lyes Kadem, Hoi Dick Ng","doi":"10.1007/s12650-024-01024-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this study, the data analysis technique of proper orthogonal decomposition (POD) is applied to the numerical simulation solutions of two-dimensional unsteady cellular detonation. As a first stage to introduce the idea, the analysis is performed on the simulation results obtained numerically with the reactive Euler equations with a one-step Arrhenius kinetic model. Cases with different activation energies <span>\\(E_{{\\rm{a}}}\\)</span> are considered, yielding different degrees of cellular instability of the detonation frontal structure. The POD modes are obtained by performing a singular value decomposition (SVD) of the full ensemble matrix whose columns are the snapshots of time-dependent pressure fields from the stored numerical solutions. The dominant spatial flow features behind the detonation front with varying <span>\\(E_{{\\rm{a}}}\\)</span> are revealed by the resulting POD modes that represent flow structures with decreasing flow energy content. The accuracy of the pressure flow field reconstructed using different levels of POD basis modes for reduced-order modeling is demonstrated. The coherent structures and increasing complexity of the flow fields with higher <span>\\(E_{{\\rm{a}}}\\)</span> are elucidated with the use of Lagrangian descriptors (LD). The potential of the methods described in this work is discussed.\n</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"122 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12650-024-01024-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the data analysis technique of proper orthogonal decomposition (POD) is applied to the numerical simulation solutions of two-dimensional unsteady cellular detonation. As a first stage to introduce the idea, the analysis is performed on the simulation results obtained numerically with the reactive Euler equations with a one-step Arrhenius kinetic model. Cases with different activation energies \(E_{{\rm{a}}}\) are considered, yielding different degrees of cellular instability of the detonation frontal structure. The POD modes are obtained by performing a singular value decomposition (SVD) of the full ensemble matrix whose columns are the snapshots of time-dependent pressure fields from the stored numerical solutions. The dominant spatial flow features behind the detonation front with varying \(E_{{\rm{a}}}\) are revealed by the resulting POD modes that represent flow structures with decreasing flow energy content. The accuracy of the pressure flow field reconstructed using different levels of POD basis modes for reduced-order modeling is demonstrated. The coherent structures and increasing complexity of the flow fields with higher \(E_{{\rm{a}}}\) are elucidated with the use of Lagrangian descriptors (LD). The potential of the methods described in this work is discussed.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用适当的正交分解和拉格朗日描述符分析来自数值模拟的二维蜂窝引爆流
摘要 本研究将适当正交分解(POD)的数据分析技术应用于二维非稳态蜂窝引爆的数值模拟解。作为介绍该思想的第一阶段,对采用反应欧拉方程和一步阿伦尼乌斯动力学模型数值模拟得到的结果进行了分析。考虑了不同活化能 \(E_{\rm{a}}}\)的情况,产生了不同程度的引爆正面结构的细胞不稳定性。POD 模式是通过对全集合矩阵进行奇异值分解(SVD)获得的,全集合矩阵的列是存储的数值解中随时间变化的压力场快照。由此得到的 POD 模式代表了流动能量含量递减的流动结构,揭示了不同 \(E_{/{rm{a}}}/)引爆前沿后的主要空间流动特征。利用不同级别的 POD 基模重建的压力流场的精确度得到了证明,从而实现了降阶建模。拉格朗日描述符(LD)的使用阐明了流场的连贯结构和复杂性随着 \(E_{\rm{a}}\)的增加而增加。讨论了这项工作中描述的方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visualization
Journal of Visualization COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
CiteScore
3.40
自引率
5.90%
发文量
79
审稿时长
>12 weeks
期刊介绍: Visualization is an interdisciplinary imaging science devoted to making the invisible visible through the techniques of experimental visualization and computer-aided visualization. The scope of the Journal is to provide a place to exchange information on the latest visualization technology and its application by the presentation of latest papers of both researchers and technicians.
期刊最新文献
Visualizing particle velocity from dual-camera mixed reality video images using 3D particle tracking velocimetry Numerical investigations of heat transfer enhancement in ionic liquid-piston compressor using cooling pipes Scatterplot selection for dimensionality reduction in multidimensional data visualization Robust and multiresolution sparse processing particle image velocimetry for improvement in spatial resolution A user study of visualisations of spatio-temporal eye tracking data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1