Specific ADC of NVM-Based Computation-in-Memory for Deep Neural Networks

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems I: Regular Papers Pub Date : 2024-09-06 DOI:10.1109/TCSI.2024.3430290
Ao Shi;Yizhou Zhang;Lixia Han;Zheng Zhou;Yiyang Chen;Haozhang Yang;Lifeng Liu;Linxiao Shen;Xiaoyan Liu;Jinfeng Kang;Peng Huang
{"title":"Specific ADC of NVM-Based Computation-in-Memory for Deep Neural Networks","authors":"Ao Shi;Yizhou Zhang;Lixia Han;Zheng Zhou;Yiyang Chen;Haozhang Yang;Lifeng Liu;Linxiao Shen;Xiaoyan Liu;Jinfeng Kang;Peng Huang","doi":"10.1109/TCSI.2024.3430290","DOIUrl":null,"url":null,"abstract":"Non-volatile memory (NVM)-based Computation-in-memory has demonstrated a significant advantage in high-efficiency neural networks. However, the requirement of analog-to-digital converter (ADC) and post-processing circuits not only cost high energy and area but also results in high computation errors, which tradeoffs the performance boost brought by CIM. Here, we present a specific ADC and post-processing circuit of the NVM-based CIM neural network to address these issues. The main contributions include: (1) A novel residual charge accumulation function (RCA) is designed to achieve charge-domain summation of quantized partial sum and reduces 38% quantization error; (2) Charge reset is introduced in the integrate & fire circuit to realize <1> <tex-math>$3.95\\times $ </tex-math></inline-formula>\n energy efficiency and \n<inline-formula> <tex-math>$2.48\\times $ </tex-math></inline-formula>\n area efficiency. Evaluation based on the measured results of the fabricated chip shows that the VGG-11 neural network with the proposed ADC circuit can achieve a 3.28-time improvement in energy efficiency while maintaining the same network recognition rate.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"71 12","pages":"5387-5399"},"PeriodicalIF":5.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10668403/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Non-volatile memory (NVM)-based Computation-in-memory has demonstrated a significant advantage in high-efficiency neural networks. However, the requirement of analog-to-digital converter (ADC) and post-processing circuits not only cost high energy and area but also results in high computation errors, which tradeoffs the performance boost brought by CIM. Here, we present a specific ADC and post-processing circuit of the NVM-based CIM neural network to address these issues. The main contributions include: (1) A novel residual charge accumulation function (RCA) is designed to achieve charge-domain summation of quantized partial sum and reduces 38% quantization error; (2) Charge reset is introduced in the integrate & fire circuit to realize <1> $3.95\times $ energy efficiency and $2.48\times $ area efficiency. Evaluation based on the measured results of the fabricated chip shows that the VGG-11 neural network with the proposed ADC circuit can achieve a 3.28-time improvement in energy efficiency while maintaining the same network recognition rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 NVM 的深度神经网络内存计算的特定 ADC
基于非易失性存储器(NVM)的 "内存计算 "已在高效神经网络中展现出显著优势。然而,模数转换器(ADC)和后处理电路的要求不仅耗费高能量和面积,还会导致计算误差增大,从而抵消了 CIM 带来的性能提升。在此,我们提出了基于 NVM 的 CIM 神经网络的特定 ADC 和后处理电路,以解决这些问题。其主要贡献包括(1) 设计了一种新颖的剩余电荷累积函数(RCA),以实现量化部分和的电荷域求和,并减少了 38% 的量化误差;(2) 在积分与发射电路中引入了电荷复位,以实现 3.95 美元的能效和 2.48 美元的面积效率。根据已制造芯片的测量结果进行的评估表明,采用所提出的 ADC 电路的 VGG-11 神经网络可在保持相同网络识别率的情况下将能效提高 3.28 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
期刊最新文献
Introducing IEEE Collabratec Table of Contents IEEE Open Access Publishing IEEE Transactions on Circuits and Systems--I: Regular Papers Publication Information IEEE Transactions on Circuits and Systems--I: Regular Papers Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1