Two points are enough

Hao Liu, Yanbin Zhao, Huarong Zheng, Xiulin Fan, Zhihua Deng, Mengchi Chen, Xingkai Wang, Zhiyang Liu, Jianguo Lu, Jian Chen
{"title":"Two points are enough","authors":"Hao Liu, Yanbin Zhao, Huarong Zheng, Xiulin Fan, Zhihua Deng, Mengchi Chen, Xingkai Wang, Zhiyang Liu, Jianguo Lu, Jian Chen","doi":"arxiv-2408.11872","DOIUrl":null,"url":null,"abstract":"Prognosis and diagnosis play an important role in accelerating the\ndevelopment of lithium-ion batteries, as well as reliable and long-life\noperation. In this work, we answer an important question: What is the minimum\namount of data required to extract features for accurate battery prognosis and\ndiagnosis? Based on the first principle, we successfully extracted the best\ntwo-point feature (BTPF) for accurate battery prognosis and diagnosis using the\nfewest data points (only two) and the simplest feature selection method\n(Pearson correlation coefficient). The BTPF extraction method is tested on 820\ncells from 6 open-source datasets (covering five different chemistry types,\nseven manufacturers, and three data types). It achieves comparable accuracy to\nstate-of-the-art features in both prognosis and diagnosis tasks. This work\nchallenges the cognition of existing studies on the difficulty of battery\nprognosis and diagnosis tasks, subverts the fixed pattern of establishing\nprognosis and diagnosis methods for complex dynamic systems through deliberate\nfeature engineering, highlights the promise of data-driven methods for field\nbattery prognosis and diagnosis applications, and provides a new benchmark for\nfuture studies.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Prognosis and diagnosis play an important role in accelerating the development of lithium-ion batteries, as well as reliable and long-life operation. In this work, we answer an important question: What is the minimum amount of data required to extract features for accurate battery prognosis and diagnosis? Based on the first principle, we successfully extracted the best two-point feature (BTPF) for accurate battery prognosis and diagnosis using the fewest data points (only two) and the simplest feature selection method (Pearson correlation coefficient). The BTPF extraction method is tested on 820 cells from 6 open-source datasets (covering five different chemistry types, seven manufacturers, and three data types). It achieves comparable accuracy to state-of-the-art features in both prognosis and diagnosis tasks. This work challenges the cognition of existing studies on the difficulty of battery prognosis and diagnosis tasks, subverts the fixed pattern of establishing prognosis and diagnosis methods for complex dynamic systems through deliberate feature engineering, highlights the promise of data-driven methods for field battery prognosis and diagnosis applications, and provides a new benchmark for future studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两点就够了
预测和诊断在加速锂离子电池的开发以及实现可靠和长寿命运行方面发挥着重要作用。在这项工作中,我们回答了一个重要问题:提取准确的电池预报和诊断特征所需的最小数据量是多少?基于第一条原则,我们使用最少的数据点(仅两个)和最简单的特征选择方法(皮尔逊相关系数),成功提取了用于准确电池预报和诊断的最佳两点特征(BTPF)。BTPF 提取方法在 6 个开源数据集(涵盖 5 种不同化学类型、7 家制造商和 3 种数据类型)的 820 个电池上进行了测试。在预后和诊断任务中,该方法的准确性与目前最先进的特征相当。这项工作挑战了现有研究对电池预测和诊断任务难度的认知,颠覆了通过深思熟虑的特征工程建立复杂动态系统预测和诊断方法的固定模式,凸显了数据驱动方法在现场电池预测和诊断应用中的前景,并为未来研究提供了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1