KAN 2.0: Kolmogorov-Arnold Networks Meet Science

Ziming Liu, Pingchuan Ma, Yixuan Wang, Wojciech Matusik, Max Tegmark
{"title":"KAN 2.0: Kolmogorov-Arnold Networks Meet Science","authors":"Ziming Liu, Pingchuan Ma, Yixuan Wang, Wojciech Matusik, Max Tegmark","doi":"arxiv-2408.10205","DOIUrl":null,"url":null,"abstract":"A major challenge of AI + Science lies in their inherent incompatibility:\ntoday's AI is primarily based on connectionism, while science depends on\nsymbolism. To bridge the two worlds, we propose a framework to seamlessly\nsynergize Kolmogorov-Arnold Networks (KANs) and science. The framework\nhighlights KANs' usage for three aspects of scientific discovery: identifying\nrelevant features, revealing modular structures, and discovering symbolic\nformulas. The synergy is bidirectional: science to KAN (incorporating\nscientific knowledge into KANs), and KAN to science (extracting scientific\ninsights from KANs). We highlight major new functionalities in the pykan\npackage: (1) MultKAN: KANs with multiplication nodes. (2) kanpiler: a KAN\ncompiler that compiles symbolic formulas into KANs. (3) tree converter: convert\nKANs (or any neural networks) to tree graphs. Based on these tools, we\ndemonstrate KANs' capability to discover various types of physical laws,\nincluding conserved quantities, Lagrangians, symmetries, and constitutive laws.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"153 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A major challenge of AI + Science lies in their inherent incompatibility: today's AI is primarily based on connectionism, while science depends on symbolism. To bridge the two worlds, we propose a framework to seamlessly synergize Kolmogorov-Arnold Networks (KANs) and science. The framework highlights KANs' usage for three aspects of scientific discovery: identifying relevant features, revealing modular structures, and discovering symbolic formulas. The synergy is bidirectional: science to KAN (incorporating scientific knowledge into KANs), and KAN to science (extracting scientific insights from KANs). We highlight major new functionalities in the pykan package: (1) MultKAN: KANs with multiplication nodes. (2) kanpiler: a KAN compiler that compiles symbolic formulas into KANs. (3) tree converter: convert KANs (or any neural networks) to tree graphs. Based on these tools, we demonstrate KANs' capability to discover various types of physical laws, including conserved quantities, Lagrangians, symmetries, and constitutive laws.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KAN 2.0:柯尔莫哥洛夫-阿诺德网络与科学相遇
当今的人工智能主要基于连接主义,而科学则依赖于符号主义。为了沟通这两个世界,我们提出了一个将科尔莫哥罗夫-阿诺德网络(KANs)与科学无缝协同的框架。该框架强调了 KAN 在科学发现三个方面的用途:识别相关特征、揭示模块结构和发现符号公式。协同作用是双向的:科学到 KAN(将科学知识纳入 KAN),KAN 到科学(从 KAN 中提取科学见解)。我们重点介绍 pykanpackage 中的主要新功能:(1) MultKAN:带有乘法节点的 KAN。(2) kanpiler:将符号公式编译成 KAN 的 KAN 编译器。(3) 树状图转换器:将 KAN(或任何神经网络)转换为树状图。基于这些工具,我们展示了 KAN 发现各类物理定律的能力,包括守恒量、拉格朗日、对称性和构成定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1