A statistical study of precipitation on the eastern antarctic plateau (Dome-C) using remote sensing and in-situ instrumentation

IF 1.5 4区 地球科学 Q3 ECOLOGY Polar Science Pub Date : 2024-08-12 DOI:10.1016/j.polar.2024.101106
Massimo Del Guasta, Philippe Ricaud, Claudio Scarchilli, Giuliano Dreossi
{"title":"A statistical study of precipitation on the eastern antarctic plateau (Dome-C) using remote sensing and in-situ instrumentation","authors":"Massimo Del Guasta, Philippe Ricaud, Claudio Scarchilli, Giuliano Dreossi","doi":"10.1016/j.polar.2024.101106","DOIUrl":null,"url":null,"abstract":"Studying precipitation at very high latitudes is a challenge, particularly during the polar winter. Direct monitoring of ice habit and size in high latitude precipitation is crucial for validating the algorithms used to derive precipitation from radar, and for improving the climatological modeling of polar areas. The high plateau lacks long-term direct observations of precipitation. In this work, carried out at Concordia Station (Dome-C (DC), −75°S, 123°E, 3233 m a.m.s.l), the use of a depolarization LIDAR, a flatbed scanner (ICECAMERA), a microwave profiler (HAMSTRAD) and meteorological instrumentation made possible the study, over the period 2014–2021, of shape, size, height and temperature of formation of precipitation. The precipitation sources were classified into four types: ice fogs, liquid fogs, mixed-phase clouds, and cirrus. Ten representative ice habits for Dome-C were chosen. The size distribution for every habit was calculated, allowing for the estimation of the corresponding radar reflectivity. The use of W-band radars, such as CLOUDSAT, with a sensitivity of −28dB, resulted in capturing all the crystals observed in Concordia. A positive trend was observed between grain size and height in ice habits that are typical of cloud precipitation. North West (NW) and North East (NE) winds at cloud height, blowing from coastal regions, caused the majority of precipitation from clouds. The study also examined the height trend of the ice habit composition of precipitation. The ice habit composition for each of the four types of precipitation source was analyzed, and the possibility of determining the source by simply observing the precipitation was explored. This work marks the first comprehensive investigation of precipitation on the eastern Antarctic plateau.","PeriodicalId":20316,"journal":{"name":"Polar Science","volume":"5 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.polar.2024.101106","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Studying precipitation at very high latitudes is a challenge, particularly during the polar winter. Direct monitoring of ice habit and size in high latitude precipitation is crucial for validating the algorithms used to derive precipitation from radar, and for improving the climatological modeling of polar areas. The high plateau lacks long-term direct observations of precipitation. In this work, carried out at Concordia Station (Dome-C (DC), −75°S, 123°E, 3233 m a.m.s.l), the use of a depolarization LIDAR, a flatbed scanner (ICECAMERA), a microwave profiler (HAMSTRAD) and meteorological instrumentation made possible the study, over the period 2014–2021, of shape, size, height and temperature of formation of precipitation. The precipitation sources were classified into four types: ice fogs, liquid fogs, mixed-phase clouds, and cirrus. Ten representative ice habits for Dome-C were chosen. The size distribution for every habit was calculated, allowing for the estimation of the corresponding radar reflectivity. The use of W-band radars, such as CLOUDSAT, with a sensitivity of −28dB, resulted in capturing all the crystals observed in Concordia. A positive trend was observed between grain size and height in ice habits that are typical of cloud precipitation. North West (NW) and North East (NE) winds at cloud height, blowing from coastal regions, caused the majority of precipitation from clouds. The study also examined the height trend of the ice habit composition of precipitation. The ice habit composition for each of the four types of precipitation source was analyzed, and the possibility of determining the source by simply observing the precipitation was explored. This work marks the first comprehensive investigation of precipitation on the eastern Antarctic plateau.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用遥感和现场仪器对南极高原东部(Dome-C)降水量进行统计研究
研究极高纬度地区的降水是一项挑战,尤其是在极地冬季。直接监测高纬度降水中冰的习性和大小,对于验证雷达降水推导算法和改进极地地区气候学建模至关重要。高原缺乏对降水的长期直接观测。这项工作在协和站(Dome-C,南纬-75°,东经 123°,海拔 3233 米)进行,利用去极化激光雷达、平板扫描仪(ICECAMERA)、微波剖面仪(HAMSTRAD)和气象仪器,对 2014-2021 年期间降水的形状、大小、高度和形成温度进行了研究。降水源分为四种类型:冰雾、液雾、混合相云和卷云。为 Dome-C 选取了十种有代表性的冰层习性。计算了每种习性的大小分布,以便估算相应的雷达反射率。使用 W 波段雷达,例如灵敏度为 -28 分贝的 CLOUDSAT,可以捕捉到在协和星观测到的所有晶体。在云降水的典型冰习性中,粒度和高度之间呈正相关趋势。云层高度的西北风和东北风从沿海地区吹来,造成了大部分云降水。该研究还考察了降水冰习性组成的高度趋势。研究分析了四种降水来源的冰习性成分,并探讨了通过观测降水来确定降水来源的可能性。这项研究首次对南极高原东部的降水进行了全面调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polar Science
Polar Science ECOLOGY-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
3.90
自引率
5.60%
发文量
46
期刊介绍: Polar Science is an international, peer-reviewed quarterly journal. It is dedicated to publishing original research articles for sciences relating to the polar regions of the Earth and other planets. Polar Science aims to cover 15 disciplines which are listed below; they cover most aspects of physical sciences, geosciences and life sciences, together with engineering and social sciences. Articles should attract the interest of broad polar science communities, and not be limited to the interests of those who work under specific research subjects. Polar Science also has an Open Archive whereby published articles are made freely available from ScienceDirect after an embargo period of 24 months from the date of publication. - Space and upper atmosphere physics - Atmospheric science/climatology - Glaciology - Oceanography/sea ice studies - Geology/petrology - Solid earth geophysics/seismology - Marine Earth science - Geomorphology/Cenozoic-Quaternary geology - Meteoritics - Terrestrial biology - Marine biology - Animal ecology - Environment - Polar Engineering - Humanities and social sciences.
期刊最新文献
Community perspectives inform coastal marine ecosystem research in northwestern Greenland Editorial Board Characterization and discrimination of tundra plant leaves by Attenuated Total Reflection Fourier transform infrared spectroscopy Cold winds in the north: Three perspectives on the impact of Russia's war in Ukraine on security and international relations in the Arctic Russia lacks the financial resources to improve living standards in the Arctic: A case of the Sakha Republic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1