SeeBand: A highly efficient, interactive tool for analyzing electronic transport data

Michael Parzer, Alexander Riss, Fabian Garmroudi, Johannes de Boor, Takao Mori, Ernst Bauer
{"title":"SeeBand: A highly efficient, interactive tool for analyzing electronic transport data","authors":"Michael Parzer, Alexander Riss, Fabian Garmroudi, Johannes de Boor, Takao Mori, Ernst Bauer","doi":"arxiv-2409.06261","DOIUrl":null,"url":null,"abstract":"Linking the fundamental physics of band structure and scattering theory with\nmacroscopic features such as measurable bulk thermoelectric transport\nproperties is indispensable to a thorough understanding of transport phenomena\nand ensures more targeted and efficient experimental research. Here, we\nintroduce SeeBand, a highly efficient and interactive fitting tool based on\nBoltzmann transport theory. A fully integrated user interface and visualization\ntool enable real-time comparison and connection between the electronic band\nstructure (EBS) and microscopic transport properties. It allows simultaneous\nanalysis of data for the Seebeck coefficient $S$, resistivity $\\rho$ and Hall\ncoefficient $R_\\text{H}$ to identify suitable EBS models and extract the\nunderlying microscopic material parameters and additional information from the\nmodel. Crucially, the EBS can be obtained by directly fitting the\ntemperature-dependent properties of a single sample, which goes beyond previous\napproaches that look into doping dependencies. Finally, the combination of\nneural-network-assisted initial guesses and an efficient subsequent fitting\nroutine allows for a rapid processing of big datasets, facilitating\nhigh-throughput analyses to identify underlying, yet undiscovered dependencies,\nthereby guiding material design.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Linking the fundamental physics of band structure and scattering theory with macroscopic features such as measurable bulk thermoelectric transport properties is indispensable to a thorough understanding of transport phenomena and ensures more targeted and efficient experimental research. Here, we introduce SeeBand, a highly efficient and interactive fitting tool based on Boltzmann transport theory. A fully integrated user interface and visualization tool enable real-time comparison and connection between the electronic band structure (EBS) and microscopic transport properties. It allows simultaneous analysis of data for the Seebeck coefficient $S$, resistivity $\rho$ and Hall coefficient $R_\text{H}$ to identify suitable EBS models and extract the underlying microscopic material parameters and additional information from the model. Crucially, the EBS can be obtained by directly fitting the temperature-dependent properties of a single sample, which goes beyond previous approaches that look into doping dependencies. Finally, the combination of neural-network-assisted initial guesses and an efficient subsequent fitting routine allows for a rapid processing of big datasets, facilitating high-throughput analyses to identify underlying, yet undiscovered dependencies, thereby guiding material design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SeeBand:分析电子运输数据的高效互动工具
将带状结构和散射理论的基础物理学与可测量的体热电传输特性等宏观特征联系起来,对于透彻理解传输现象是不可或缺的,并能确保开展更有针对性和更高效的实验研究。在此,我们介绍基于玻尔兹曼输运理论的高效互动拟合工具 SeeBand。通过完全集成的用户界面和可视化工具,可以实时比较和连接电子能带结构(EBS)和微观输运特性。它允许同时分析塞贝克系数 $S$、电阻率 $\rho$ 和霍尔系数 $R_\text{H}$ 的数据,以确定合适的 EBS 模型,并从模型中提取基本的微观材料参数和附加信息。最重要的是,EBS 可以通过直接拟合单个样品随温度变化的特性来获得,这超越了以前研究掺杂相关性的方法。最后,神经网络辅助初始猜测与高效的后续拟合程序相结合,可以快速处理大型数据集,便于进行高通量分析,找出尚未发现的潜在依赖关系,从而指导材料设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1