R. R. Zinnatullin, A. I. Iskandarov, L. A. Kovaleva
{"title":"Investigation of the Interfacial Tension at the Interface Between Water and Asphaltene Solution in Toluene","authors":"R. R. Zinnatullin, A. I. Iskandarov, L. A. Kovaleva","doi":"10.1134/s1063785023180190","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The dynamics of the interfacial tension coefficient at the interface between water and model solutions of asphaltenes of different concentrations in toluene has been studied. It has been shown that, over time, the interfacial tension decreases due to the adsorption of asphaltene molecules at the interface. With an increase in the concentration of asphaltenes in the solution, the decrease in interfacial tension occurs more intensively. The results of a study of the elongation of a water drop in a solution under the influence of an electric field are presented. It is shown that after the formation of an adsorption film, a higher electric field must be applied to stretch the droplet, and the relative elongation depends nonlinearly on the applied voltage.</p>","PeriodicalId":784,"journal":{"name":"Technical Physics Letters","volume":"10 5 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063785023180190","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamics of the interfacial tension coefficient at the interface between water and model solutions of asphaltenes of different concentrations in toluene has been studied. It has been shown that, over time, the interfacial tension decreases due to the adsorption of asphaltene molecules at the interface. With an increase in the concentration of asphaltenes in the solution, the decrease in interfacial tension occurs more intensively. The results of a study of the elongation of a water drop in a solution under the influence of an electric field are presented. It is shown that after the formation of an adsorption film, a higher electric field must be applied to stretch the droplet, and the relative elongation depends nonlinearly on the applied voltage.
期刊介绍:
Technical Physics Letters is a companion journal to Technical Physics and offers rapid publication of developments in theoretical and experimental physics with potential technological applications. Recent emphasis has included many papers on gas lasers and on lasing in semiconductors, as well as many reports on high Tc superconductivity. The excellent coverage of plasma physics seen in the parent journal, Technical Physics, is also present here with quick communication of developments in theoretical and experimental work in all fields with probable technical applications. Topics covered are basic and applied physics; plasma physics; solid state physics; physical electronics; accelerators; microwave electron devices; holography.