Growth Mechanism of Monolayer on the Top Facet of Ga-Catalyzed GaAs and GaP Nanowires

IF 0.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED Technical Physics Letters Pub Date : 2024-08-29 DOI:10.1134/s1063785023170133
A. A. Koryakin, Yu. A. Eremeev, S. V. Fedina, V. V. Fedorov
{"title":"Growth Mechanism of Monolayer on the Top Facet of Ga-Catalyzed GaAs and GaP Nanowires","authors":"A. A. Koryakin, Yu. A. Eremeev, S. V. Fedina, V. V. Fedorov","doi":"10.1134/s1063785023170133","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The growth mechanism of monolayer on the top facet of Ga-catalyzed GaAs and GaP nanowires is investigated. Within the framework of a theoretical model, the maximal monolayer coverage due to the material in the catalyst droplet, the nanowire growth rate and the content of group V atoms in the droplet are found depending on the growth conditions. The estimates of the phosphorus re-evaporation coefficient from neighboring nanowires and substrate are obtained by comparing the theoretical and experimental growth rate of Ga-catalyzed GaP nanowires.</p>","PeriodicalId":784,"journal":{"name":"Technical Physics Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063785023170133","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract—The growth mechanism of monolayer on the top facet of Ga-catalyzed GaAs and GaP nanowires is investigated. Within the framework of a theoretical model, the maximal monolayer coverage due to the material in the catalyst droplet, the nanowire growth rate and the content of group V atoms in the droplet are found depending on the growth conditions. The estimates of the phosphorus re-evaporation coefficient from neighboring nanowires and substrate are obtained by comparing the theoretical and experimental growth rate of Ga-catalyzed GaP nanowires.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镓催化砷化镓和磷化镓纳米线顶面单层的生长机制
摘要 研究了镓催化砷化镓和磷化镓纳米线顶面单层的生长机理。在理论模型的框架内,发现了催化剂液滴中材料导致的最大单层覆盖率、纳米线生长速率以及液滴中 V 族原子的含量取决于生长条件。通过比较镓催化 GaP 纳米线的理论生长率和实验生长率,得到了邻近纳米线和基底磷再蒸发系数的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Technical Physics Letters
Technical Physics Letters 物理-物理:应用
CiteScore
1.50
自引率
0.00%
发文量
44
审稿时长
2-4 weeks
期刊介绍: Technical Physics Letters is a companion journal to Technical Physics and offers rapid publication of developments in theoretical and experimental physics with potential technological applications. Recent emphasis has included many papers on gas lasers and on lasing in semiconductors, as well as many reports on high Tc superconductivity. The excellent coverage of plasma physics seen in the parent journal, Technical Physics, is also present here with quick communication of developments in theoretical and experimental work in all fields with probable technical applications. Topics covered are basic and applied physics; plasma physics; solid state physics; physical electronics; accelerators; microwave electron devices; holography.
期刊最新文献
On the Kinetic Approach with Allowance for Higher-Order Heterogeneities in the Navier–Stokes Equation Nonlinear Dynamics of Motion of a Cylindrical Body with an Elastic Coupling in a Viscous Continuum The Initial Stages of the Formation of a Pulsed Discharge in a Gap with a Tip–Plane Geometry in Preionized Argon Influence of Irradiation with Accelerated Electrons on the Physical Properties of Polyethylene Terephthalate Temporal Pattern of Microcracking in Impact–Damaged Porous SiC Ceramics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1