Alejandro Sandria Díaz, Yasmini da Cunha Cruz, Vinícius Politi Duarte, Evaristo Mauro de Castro, Paulo César Magalhães, Fabricio José Pereira
{"title":"The role of sodium nitroprusside (SNP) in alleviating cadmium stress in maize plants","authors":"Alejandro Sandria Díaz, Yasmini da Cunha Cruz, Vinícius Politi Duarte, Evaristo Mauro de Castro, Paulo César Magalhães, Fabricio José Pereira","doi":"10.1007/s00709-024-01987-2","DOIUrl":null,"url":null,"abstract":"<p>Cadmium (Cd) is a heavy metal that is highly toxic to plants and animals and can accumulate in the environment as a result of industrial activities and agricultural application of some types of phosphate fertilizer. This study aimed to assess the role of sodium nitroprusside (SNP), as a source of nitric oxide (NO) in alleviating Cd stress in maize plants. Maize plants were kept in soil saturated with 40%-strength nutrient solution in a greenhouse, and cadmium nitrate, Cd(NO<sub>3</sub>)<sub>2</sub>, was applied at different concentrations, (0, 10, and 50 µM). Sodium nitroprusside, [Fe(CN)<sub>5</sub>NO]·2H<sub>2</sub>O, at concentrations of 0.05, 0.1, and 0.2 µM. Growth, leaf gas exchange, and leaf anatomy analyses were performed. The experimental design was completely randomized in a 3 × 3 factorial arrangement with five replicates. The highest concentrations of Cd and SNP reduced the total dry mass and leaf and stem dry mass but increased the allocation of biomass to the roots and stem, but the leaf allocation did not change. The application of Cd and SNP promoted an increase in gas exchange and leaf area, in addition to an increase in leaf tissue thickness and stomatal density. The presence of SNP at low concentrations reduces the toxicity of Cd, but at high concentrations, this compound can generate negative effects and even toxicity in maize plants.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":"9 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-01987-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic to plants and animals and can accumulate in the environment as a result of industrial activities and agricultural application of some types of phosphate fertilizer. This study aimed to assess the role of sodium nitroprusside (SNP), as a source of nitric oxide (NO) in alleviating Cd stress in maize plants. Maize plants were kept in soil saturated with 40%-strength nutrient solution in a greenhouse, and cadmium nitrate, Cd(NO3)2, was applied at different concentrations, (0, 10, and 50 µM). Sodium nitroprusside, [Fe(CN)5NO]·2H2O, at concentrations of 0.05, 0.1, and 0.2 µM. Growth, leaf gas exchange, and leaf anatomy analyses were performed. The experimental design was completely randomized in a 3 × 3 factorial arrangement with five replicates. The highest concentrations of Cd and SNP reduced the total dry mass and leaf and stem dry mass but increased the allocation of biomass to the roots and stem, but the leaf allocation did not change. The application of Cd and SNP promoted an increase in gas exchange and leaf area, in addition to an increase in leaf tissue thickness and stomatal density. The presence of SNP at low concentrations reduces the toxicity of Cd, but at high concentrations, this compound can generate negative effects and even toxicity in maize plants.
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".