Effect of in-situ forging assisted squeeze casting on the forming quality and mechanical properties of automobile control arm

Wenbin Zhan, Tiantai Tian, Hongtu Xu, Bingli Hua, Liqun Niu, Bo Cui, Qi Zhang
{"title":"Effect of in-situ forging assisted squeeze casting on the forming quality and mechanical properties of automobile control arm","authors":"Wenbin Zhan, Tiantai Tian, Hongtu Xu, Bingli Hua, Liqun Niu, Bo Cui, Qi Zhang","doi":"10.1016/j.jmrt.2024.09.009","DOIUrl":null,"url":null,"abstract":"The squeeze casting technique offers promising prospects for a wide range of applications, as it provides an effective solution to address the challenges associated with the poor casting performance of wrought aluminum alloys. In this paper, we implemented in-situ forging assisted squeeze casting (IFSC) to form an automobile control arm using a high-strength Al–Zn–Mg–Cu alloy modified with Zr and Er. The solidification defects, microstructures, and mechanical properties of the part were investigated under different pressures and in-situ forging using various analytical techniques. With the increase of squeezing pressure from 0 MPa to 120 MPa, the ultimate tensile strength (UTS) of the sample increases from 500 MPa to 593.3 MPa, and the elongation is 4.35 %. After in-situ forging, the tensile strength of the sample is 600.9 MPa and the elongation is 5.59 %. UTS is comparable to squeeze casting, but the elongation is increased by 28.5 %. The results indicate that increasing the forming pressure enhances the surface quality of the parts and reduces the solidification defects. In addition, increasing the forming pressure not only refines the grain but also improves the grain morphology and enhances the uniformity of the structure. The squeezing pressure can enhance the contact between the alloy melt and the mold, increasing the metal's cooling rate and promoting nucleation for grain refinement. In-situ forging further facilitates liquid phase feeding, reduces alloy defects, and improves the overall mechanical properties.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.09.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The squeeze casting technique offers promising prospects for a wide range of applications, as it provides an effective solution to address the challenges associated with the poor casting performance of wrought aluminum alloys. In this paper, we implemented in-situ forging assisted squeeze casting (IFSC) to form an automobile control arm using a high-strength Al–Zn–Mg–Cu alloy modified with Zr and Er. The solidification defects, microstructures, and mechanical properties of the part were investigated under different pressures and in-situ forging using various analytical techniques. With the increase of squeezing pressure from 0 MPa to 120 MPa, the ultimate tensile strength (UTS) of the sample increases from 500 MPa to 593.3 MPa, and the elongation is 4.35 %. After in-situ forging, the tensile strength of the sample is 600.9 MPa and the elongation is 5.59 %. UTS is comparable to squeeze casting, but the elongation is increased by 28.5 %. The results indicate that increasing the forming pressure enhances the surface quality of the parts and reduces the solidification defects. In addition, increasing the forming pressure not only refines the grain but also improves the grain morphology and enhances the uniformity of the structure. The squeezing pressure can enhance the contact between the alloy melt and the mold, increasing the metal's cooling rate and promoting nucleation for grain refinement. In-situ forging further facilitates liquid phase feeding, reduces alloy defects, and improves the overall mechanical properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位锻造辅助挤压铸造对汽车控制臂成型质量和机械性能的影响
挤压铸造技术为解决锻造铝合金铸造性能差的难题提供了有效的解决方案,因此具有广泛的应用前景。在本文中,我们采用原位锻造辅助挤压铸造(IFSC)技术,使用添加了 Zr 和 Er 的高强度 Al-Zn-Mg-Cu 合金制造汽车控制臂。利用各种分析技术研究了不同压力和原位锻造条件下零件的凝固缺陷、微观结构和机械性能。随着挤压力从 0 兆帕增加到 120 兆帕,样品的极限拉伸强度(UTS)从 500 兆帕增加到 593.3 兆帕,伸长率为 4.35%。原位锻造后,试样的抗拉强度为 600.9 兆帕,伸长率为 5.59 %。UTS 与挤压铸造相当,但伸长率增加了 28.5 %。结果表明,增加成型压力可提高零件的表面质量,减少凝固缺陷。此外,增加成型压力不仅能细化晶粒,还能改善晶粒形态,提高结构的均匀性。挤压压力可加强合金熔体与模具之间的接触,提高金属的冷却速度,促进晶粒细化成核。原位锻造进一步促进了液相进给,减少了合金缺陷,提高了整体机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revealing the microstructural evolution and mechanical response of repaired Fe–Cr–Si based alloy by directed energy deposition Non-planar additive manufacturing of pre-impregnated continuous fiber reinforced composites using a three-axis printer Microstructure and mechanical property of high-density 7075 Al alloy by compression molding of POM-based feedstock Effect of microstructural inheritance window on the mechanical properties of an intercritically annealed Q&P steel Clarifying the effect of irradiation and thermal treatment on the austenitic microstructure and austenitic hardening in austenitic stainless steel weld metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1