Wenhao Yang, Yanjun Zhou, Ran Yang, Shaodan Yang, Fei Zhou, Kexing Song, Jiang Feng, Hao Jiang, Xuebin Zhang, Juan Du
{"title":"Effect mechanism of Nb addition on grain refinement and inhibition of discontinuous precipitation of Cu–15Ni–8Sn alloy","authors":"Wenhao Yang, Yanjun Zhou, Ran Yang, Shaodan Yang, Fei Zhou, Kexing Song, Jiang Feng, Hao Jiang, Xuebin Zhang, Juan Du","doi":"10.1016/j.jmrt.2024.08.209","DOIUrl":null,"url":null,"abstract":"Cu–15Ni–8Sn-Nb alloys ( = 0, 0.2, 0.6 wt%) were prepared using a medium-frequency induction melting furnace. The effect of Nb addition on grain refinement and inhibition of discontinuous precipitation (DP) in Cu–15Ni–8Sn alloys was systematically studied to elucidate the mechanism by which microstructural characteristics contribute to strength improvement. The results indicate that the increase the Nb content from 0 to 0.6 wt% reduces the average grain size of the as-cast alloy from approximately 524.8 μm to approximately 81.3 μm, and significantly decreases the lamellar transition structure region (α+γ). During solution treatment, dispersed needle-like NbNi phases were observed in the Cu–15Ni–8Sn-0.2Nb alloy. After aging, the DP growth rate in the Cu–15Ni–8Sn-0.2Nb alloy was notably slower than those of the other alloys. This was attributed to NbNi phases at the grain boundaries hindering DP nucleation, with intragranular NbNi phases inhibiting DP growth. The phase transformation order of the solid solution Cu–15Ni–8Sn-0.2Nb at 673 K aging is: spinodal structure → D0 ordered phase → L1 ordered phase → DP. The hardness and tensile strength of the Cu–15Ni–8Sn-0.2Nb alloy peaked at 338.3 HV and 725.42 MPa, respectively, after aging for 120 min. Using the Johnson–Mehl–Avrami–Kolmogorov (JMAK) and Arrhenius equations, the activation energies of DP in Cu–15Ni–8Sn-Nb (x = 0, 0.2, 0.6 wt%) alloys were calculated to be 93.19, 148.64, and 98.33 kJ/mol, respectively. These values suggest that the diffusion of DP atoms in the Nb-containing alloys is hindered, which effectively inhibits DP formation.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.08.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cu–15Ni–8Sn-Nb alloys ( = 0, 0.2, 0.6 wt%) were prepared using a medium-frequency induction melting furnace. The effect of Nb addition on grain refinement and inhibition of discontinuous precipitation (DP) in Cu–15Ni–8Sn alloys was systematically studied to elucidate the mechanism by which microstructural characteristics contribute to strength improvement. The results indicate that the increase the Nb content from 0 to 0.6 wt% reduces the average grain size of the as-cast alloy from approximately 524.8 μm to approximately 81.3 μm, and significantly decreases the lamellar transition structure region (α+γ). During solution treatment, dispersed needle-like NbNi phases were observed in the Cu–15Ni–8Sn-0.2Nb alloy. After aging, the DP growth rate in the Cu–15Ni–8Sn-0.2Nb alloy was notably slower than those of the other alloys. This was attributed to NbNi phases at the grain boundaries hindering DP nucleation, with intragranular NbNi phases inhibiting DP growth. The phase transformation order of the solid solution Cu–15Ni–8Sn-0.2Nb at 673 K aging is: spinodal structure → D0 ordered phase → L1 ordered phase → DP. The hardness and tensile strength of the Cu–15Ni–8Sn-0.2Nb alloy peaked at 338.3 HV and 725.42 MPa, respectively, after aging for 120 min. Using the Johnson–Mehl–Avrami–Kolmogorov (JMAK) and Arrhenius equations, the activation energies of DP in Cu–15Ni–8Sn-Nb (x = 0, 0.2, 0.6 wt%) alloys were calculated to be 93.19, 148.64, and 98.33 kJ/mol, respectively. These values suggest that the diffusion of DP atoms in the Nb-containing alloys is hindered, which effectively inhibits DP formation.