M. Vabre, Z. Li, S. Jella, P. Versailles, G. Bourque, M. Day, B. Savard
{"title":"DNS of ignition and flame stabilization in a simplified gas turbine premixer","authors":"M. Vabre, Z. Li, S. Jella, P. Versailles, G. Bourque, M. Day, B. Savard","doi":"10.1016/j.proci.2024.105701","DOIUrl":null,"url":null,"abstract":"With the increasing need for fuel flexibility, mitigation of auto-ignition (AI) inside gas turbine (GT) premixers becomes crucial. They must be designed to yield a sufficiently homogeneous fuel–air mixture to achieve low emissions while at the same time avoiding the occurrence of AI and subsequent flame stabilization. This challenge requires a detailed understanding of turbulent mixing and chemistry interactions. In the present work, a direct numerical simulation (DNS) of an array of jets in crossflow (JICF), representative of an industrial GT premixer, is reported to shed light on these complex phenomena. It is found that AI kernels form in the aft part of the premixer and coalesce into a flame front that then propagates upstream, mainly through the boundary layer, and successively engulfs the jets. This, therefore, suggests a significant role of the jet array pattern on the flame stabilization. It is noted that AI kernels continue to form independently during the whole time of the simulation. To clarify the contribution of AI and diffusion in the ignition kernels and the main flame, chemical explosive mode analysis (CEMA) is employed jointly with a kernel tracking algorithm. It is found that during the initial formation of the flame, many ignition kernels form in mixtures with low scalar dissipation rate and large contribution from AI mode. As they quickly grow, they merge into a single flame front that becomes increasingly more diffusion-assisted over time, balancing the AI mode. Turbulence is shown to have a significant enhancing effect in lean premixed flames, but further analysis is required to fully characterize it. These findings are relevant for the industrial premixer studied, and also for novel micromix concepts that may be used in the next generation of GT combustion systems.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"10 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105701","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing need for fuel flexibility, mitigation of auto-ignition (AI) inside gas turbine (GT) premixers becomes crucial. They must be designed to yield a sufficiently homogeneous fuel–air mixture to achieve low emissions while at the same time avoiding the occurrence of AI and subsequent flame stabilization. This challenge requires a detailed understanding of turbulent mixing and chemistry interactions. In the present work, a direct numerical simulation (DNS) of an array of jets in crossflow (JICF), representative of an industrial GT premixer, is reported to shed light on these complex phenomena. It is found that AI kernels form in the aft part of the premixer and coalesce into a flame front that then propagates upstream, mainly through the boundary layer, and successively engulfs the jets. This, therefore, suggests a significant role of the jet array pattern on the flame stabilization. It is noted that AI kernels continue to form independently during the whole time of the simulation. To clarify the contribution of AI and diffusion in the ignition kernels and the main flame, chemical explosive mode analysis (CEMA) is employed jointly with a kernel tracking algorithm. It is found that during the initial formation of the flame, many ignition kernels form in mixtures with low scalar dissipation rate and large contribution from AI mode. As they quickly grow, they merge into a single flame front that becomes increasingly more diffusion-assisted over time, balancing the AI mode. Turbulence is shown to have a significant enhancing effect in lean premixed flames, but further analysis is required to fully characterize it. These findings are relevant for the industrial premixer studied, and also for novel micromix concepts that may be used in the next generation of GT combustion systems.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.