{"title":"Distributed Age-of-Information Scheduling With NOMA via Deep Reinforcement Learning","authors":"Congwei Zhang;Yifei Zou;Zuyuan Zhang;Dongxiao Yu;Jorge Torres Gómez;Tian Lan;Falko Dressler;Xiuzhen Cheng","doi":"10.1109/TMC.2024.3459101","DOIUrl":null,"url":null,"abstract":"Many emerging applications in edge computing require processing of huge volumes of data generated by end devices, using the freshest available information. In this paper, we address the distributed optimization of multi-user long-term average Age-of-Information (AoI) objectives in edge networks that use NOMA transmission. This poses a challenge of non-convex online optimization, which in existing work often requires either decision making in a combinatorial space or a global view of entire network states. To overcome this challenge, we propose a reinforcement learning-based framework that adopts a novel hierarchical decomposition of decision making. Specifically, we propose three different types of distributed agents to learn with respect to efficiency of AoI scheduling, fairness of AoI scheduling, as well as a high-level policy balancing these potentially conflicting design objectives. Not only does the proposed decomposition improve learning performance due to disentanglement of different design objectives/rewards, but it also enables the algorithm to learn the best policy while also learning the explanations – as actions can be directly compared in terms of the design objectives. Our evaluations show that the proposed algorithm improves the long-term average AoI by \n<inline-formula><tex-math>$200\\%{-}300\\%$</tex-math></inline-formula>\n and 400% compared to prior works with NOMA and the optimal solution without NOMA, respectively.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 1","pages":"30-44"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10678915/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Many emerging applications in edge computing require processing of huge volumes of data generated by end devices, using the freshest available information. In this paper, we address the distributed optimization of multi-user long-term average Age-of-Information (AoI) objectives in edge networks that use NOMA transmission. This poses a challenge of non-convex online optimization, which in existing work often requires either decision making in a combinatorial space or a global view of entire network states. To overcome this challenge, we propose a reinforcement learning-based framework that adopts a novel hierarchical decomposition of decision making. Specifically, we propose three different types of distributed agents to learn with respect to efficiency of AoI scheduling, fairness of AoI scheduling, as well as a high-level policy balancing these potentially conflicting design objectives. Not only does the proposed decomposition improve learning performance due to disentanglement of different design objectives/rewards, but it also enables the algorithm to learn the best policy while also learning the explanations – as actions can be directly compared in terms of the design objectives. Our evaluations show that the proposed algorithm improves the long-term average AoI by
$200\%{-}300\%$
and 400% compared to prior works with NOMA and the optimal solution without NOMA, respectively.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.