LoRID: Low-Rank Iterative Diffusion for Adversarial Purification

Geigh Zollicoffer, Minh Vu, Ben Nebgen, Juan Castorena, Boian Alexandrov, Manish Bhattarai
{"title":"LoRID: Low-Rank Iterative Diffusion for Adversarial Purification","authors":"Geigh Zollicoffer, Minh Vu, Ben Nebgen, Juan Castorena, Boian Alexandrov, Manish Bhattarai","doi":"arxiv-2409.08255","DOIUrl":null,"url":null,"abstract":"This work presents an information-theoretic examination of diffusion-based\npurification methods, the state-of-the-art adversarial defenses that utilize\ndiffusion models to remove malicious perturbations in adversarial examples. By\ntheoretically characterizing the inherent purification errors associated with\nthe Markov-based diffusion purifications, we introduce LoRID, a novel Low-Rank\nIterative Diffusion purification method designed to remove adversarial\nperturbation with low intrinsic purification errors. LoRID centers around a\nmulti-stage purification process that leverages multiple rounds of\ndiffusion-denoising loops at the early time-steps of the diffusion models, and\nthe integration of Tucker decomposition, an extension of matrix factorization,\nto remove adversarial noise at high-noise regimes. Consequently, LoRID\nincreases the effective diffusion time-steps and overcomes strong adversarial\nattacks, achieving superior robustness performance in CIFAR-10/100, CelebA-HQ,\nand ImageNet datasets under both white-box and black-box settings.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents an information-theoretic examination of diffusion-based purification methods, the state-of-the-art adversarial defenses that utilize diffusion models to remove malicious perturbations in adversarial examples. By theoretically characterizing the inherent purification errors associated with the Markov-based diffusion purifications, we introduce LoRID, a novel Low-Rank Iterative Diffusion purification method designed to remove adversarial perturbation with low intrinsic purification errors. LoRID centers around a multi-stage purification process that leverages multiple rounds of diffusion-denoising loops at the early time-steps of the diffusion models, and the integration of Tucker decomposition, an extension of matrix factorization, to remove adversarial noise at high-noise regimes. Consequently, LoRID increases the effective diffusion time-steps and overcomes strong adversarial attacks, achieving superior robustness performance in CIFAR-10/100, CelebA-HQ, and ImageNet datasets under both white-box and black-box settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LoRID:逆向纯化的低链迭代扩散
本研究从信息论角度对基于扩散的净化方法进行了研究,这些方法是最先进的对抗防御手段,利用扩散模型来消除对抗示例中的恶意扰动。通过从理论上描述与基于马尔可夫的扩散净化相关的固有净化误差,我们引入了 LoRID,这是一种新型的低阶迭代扩散净化方法,旨在以较低的固有净化误差消除对抗性扰动。LoRID 以多级净化过程为中心,在扩散模型的早期时间步骤利用多轮扩散-去噪循环,并结合矩阵因式分解的扩展--塔克分解,以去除高噪声状态下的对抗性噪声。因此,LoRID 增加了有效的扩散时间步数,克服了强大的对抗性攻击,在 CIFAR-10/100、CelebA-HQ 和 ImageNet 数据集的白盒和黑盒设置下都取得了卓越的鲁棒性表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Almost Sure Convergence of Linear Temporal Difference Learning with Arbitrary Features The Impact of Element Ordering on LM Agent Performance Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques Extended Deep Submodular Functions Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1