Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques

Yubo Li, Saba Al-Sayouri, Rema Padman
{"title":"Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques","authors":"Yubo Li, Saba Al-Sayouri, Rema Padman","doi":"arxiv-2409.12087","DOIUrl":null,"url":null,"abstract":"This study explores the potential of utilizing administrative claims data,\ncombined with advanced machine learning and deep learning techniques, to\npredict the progression of Chronic Kidney Disease (CKD) to End-Stage Renal\nDisease (ESRD). We analyze a comprehensive, 10-year dataset provided by a major\nhealth insurance organization to develop prediction models for multiple\nobservation windows using traditional machine learning methods such as Random\nForest and XGBoost as well as deep learning approaches such as Long Short-Term\nMemory (LSTM) networks. Our findings demonstrate that the LSTM model,\nparticularly with a 24-month observation window, exhibits superior performance\nin predicting ESRD progression, outperforming existing models in the\nliterature. We further apply SHapley Additive exPlanations (SHAP) analysis to\nenhance interpretability, providing insights into the impact of individual\nfeatures on predictions at the individual patient level. This study underscores\nthe value of leveraging administrative claims data for CKD management and\npredicting ESRD progression.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the potential of utilizing administrative claims data, combined with advanced machine learning and deep learning techniques, to predict the progression of Chronic Kidney Disease (CKD) to End-Stage Renal Disease (ESRD). We analyze a comprehensive, 10-year dataset provided by a major health insurance organization to develop prediction models for multiple observation windows using traditional machine learning methods such as Random Forest and XGBoost as well as deep learning approaches such as Long Short-Term Memory (LSTM) networks. Our findings demonstrate that the LSTM model, particularly with a 24-month observation window, exhibits superior performance in predicting ESRD progression, outperforming existing models in the literature. We further apply SHapley Additive exPlanations (SHAP) analysis to enhance interpretability, providing insights into the impact of individual features on predictions at the individual patient level. This study underscores the value of leveraging administrative claims data for CKD management and predicting ESRD progression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现可解释的终末期肾病 (ESRD) 预测:利用行政索赔数据和可解释的人工智能技术
本研究探讨了利用行政报销数据,结合先进的机器学习和深度学习技术,预测慢性肾脏病(CKD)向终末期肾病(ESRD)进展的潜力。我们分析了一家大型医疗保险机构提供的为期 10 年的综合数据集,利用随机森林(RandomForest)和 XGBoost 等传统机器学习方法以及长短期记忆(LSTM)网络等深度学习方法,开发了多个观察窗的预测模型。我们的研究结果表明,LSTM 模型,尤其是在 24 个月的观察窗口中,在预测 ESRD 进展方面表现出卓越的性能,优于文献中的现有模型。我们还进一步应用了SHAPLEY Additive exPlanations(SHAP)分析来增强可解释性,从而深入了解个体特征对患者个体水平预测的影响。这项研究强调了利用行政报销数据进行 CKD 管理和预测 ESRD 进展的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Almost Sure Convergence of Linear Temporal Difference Learning with Arbitrary Features The Impact of Element Ordering on LM Agent Performance Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques Extended Deep Submodular Functions Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1