FPMT: Enhanced Semi-Supervised Model for Traffic Incident Detection

Xinying Lu, Jianli Xiao
{"title":"FPMT: Enhanced Semi-Supervised Model for Traffic Incident Detection","authors":"Xinying Lu, Jianli Xiao","doi":"arxiv-2409.07839","DOIUrl":null,"url":null,"abstract":"For traffic incident detection, the acquisition of data and labels is notably\nresource-intensive, rendering semi-supervised traffic incident detection both a\nformidable and consequential challenge. Thus, this paper focuses on traffic\nincident detection with a semi-supervised learning way. It proposes a\nsemi-supervised learning model named FPMT within the framework of MixText. The\ndata augmentation module introduces Generative Adversarial Networks to balance\nand expand the dataset. During the mix-up process in the hidden space, it\nemploys a probabilistic pseudo-mixing mechanism to enhance regularization and\nelevate model precision. In terms of training strategy, it initiates with\nunsupervised training on all data, followed by supervised fine-tuning on a\nsubset of labeled data, and ultimately completing the goal of semi-supervised\ntraining. Through empirical validation on four authentic datasets, our FPMT\nmodel exhibits outstanding performance across various metrics. Particularly\nnoteworthy is its robust performance even in scenarios with low label rates.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For traffic incident detection, the acquisition of data and labels is notably resource-intensive, rendering semi-supervised traffic incident detection both a formidable and consequential challenge. Thus, this paper focuses on traffic incident detection with a semi-supervised learning way. It proposes a semi-supervised learning model named FPMT within the framework of MixText. The data augmentation module introduces Generative Adversarial Networks to balance and expand the dataset. During the mix-up process in the hidden space, it employs a probabilistic pseudo-mixing mechanism to enhance regularization and elevate model precision. In terms of training strategy, it initiates with unsupervised training on all data, followed by supervised fine-tuning on a subset of labeled data, and ultimately completing the goal of semi-supervised training. Through empirical validation on four authentic datasets, our FPMT model exhibits outstanding performance across various metrics. Particularly noteworthy is its robust performance even in scenarios with low label rates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FPMT:用于交通事故检测的增强型半监督模型
对于交通事故检测而言,数据和标签的获取显然是资源密集型的,这使得半监督交通事故检测成为一项艰巨而又重要的挑战。因此,本文重点关注采用半监督学习方式的交通事故检测。它在 MixText 框架内提出了一个名为 FPMT 的半监督学习模型。数据增强模块引入生成对抗网络(Generative Adversarial Networks)来平衡和扩展数据集。在隐藏空间的混合过程中,它采用了概率伪混合机制来增强正则化和提高模型精度。在训练策略上,它首先对所有数据进行无监督训练,然后对标注数据的子集进行监督微调,最终完成半监督训练的目标。通过在四个真实数据集上的经验验证,我们的 FPMT 模型在各种指标上都表现出了卓越的性能。尤其值得注意的是,即使在标签率较低的情况下,它的性能也很稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Almost Sure Convergence of Linear Temporal Difference Learning with Arbitrary Features The Impact of Element Ordering on LM Agent Performance Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques Extended Deep Submodular Functions Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1