An AI-Based Evaluation Framework for Smart Building Integration into Smart City

IF 3.3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Sustainability Pub Date : 2024-09-13 DOI:10.3390/su16188032
Mustafa Muthanna Najm Shahrabani, Rasa Apanaviciene
{"title":"An AI-Based Evaluation Framework for Smart Building Integration into Smart City","authors":"Mustafa Muthanna Najm Shahrabani, Rasa Apanaviciene","doi":"10.3390/su16188032","DOIUrl":null,"url":null,"abstract":"The integration of smart buildings (SBs) into smart cities (SCs) is critical to urban development, with the potential to improve SCs’ performance. Artificial intelligence (AI) applications have emerged as a promising tool to enhance SB and SC development. The authors apply an AI-based methodology, particularly Large Language Models of OpenAI ChatGPT-3 and Google Bard as AI experts, to uniquely evaluate 26 criteria that represent SB services across five SC infrastructure domains (energy, mobility, water, waste management, and security), emphasizing their contributions to the integration of SB into SC and quantifying their impact on the efficiency, resilience, and environmental sustainability of SC. The framework was then validated through two rounds of the Delphi method, leveraging human expert knowledge and an iterative consensus-building process. The framework’s efficiency in analyzing complicated information and generating important insights is demonstrated via five case studies. These findings contribute to a deeper understanding of the effects of SB services on SC infrastructure domains, highlighting the intricate nature of SC, as well as revealing areas that require further integration to realize the SC performance objectives.","PeriodicalId":22183,"journal":{"name":"Sustainability","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/su16188032","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of smart buildings (SBs) into smart cities (SCs) is critical to urban development, with the potential to improve SCs’ performance. Artificial intelligence (AI) applications have emerged as a promising tool to enhance SB and SC development. The authors apply an AI-based methodology, particularly Large Language Models of OpenAI ChatGPT-3 and Google Bard as AI experts, to uniquely evaluate 26 criteria that represent SB services across five SC infrastructure domains (energy, mobility, water, waste management, and security), emphasizing their contributions to the integration of SB into SC and quantifying their impact on the efficiency, resilience, and environmental sustainability of SC. The framework was then validated through two rounds of the Delphi method, leveraging human expert knowledge and an iterative consensus-building process. The framework’s efficiency in analyzing complicated information and generating important insights is demonstrated via five case studies. These findings contribute to a deeper understanding of the effects of SB services on SC infrastructure domains, highlighting the intricate nature of SC, as well as revealing areas that require further integration to realize the SC performance objectives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工智能的智能建筑融入智慧城市评估框架
智能建筑(SB)与智能城市(SC)的融合对城市发展至关重要,并有可能提高智能城市的绩效。人工智能(AI)应用已成为促进智能建筑和智慧城市发展的一种前景广阔的工具。作者应用了一种基于人工智能的方法,特别是作为人工智能专家的 OpenAI ChatGPT-3 和 Google Bard 的大型语言模型,对代表五个 SC 基础设施领域(能源、交通、水、废物管理和安全)的 SB 服务的 26 个标准进行了独特的评估,强调了它们对将 SB 纳入 SC 的贡献,并量化了它们对 SC 的效率、复原力和环境可持续性的影响。然后,通过两轮德尔菲法,利用人类专家知识和建立共识的迭代过程,对该框架进行了验证。五个案例研究证明了该框架在分析复杂信息和产生重要见解方面的效率。这些研究结果有助于深入了解 SB 服务对 SC 基础设施领域的影响,突出了 SC 的复杂性,并揭示了需要进一步整合以实现 SC 性能目标的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainability
Sustainability ENVIRONMENTAL SCIENCES-ENVIRONMENTAL SCIENCES
CiteScore
6.80
自引率
20.50%
发文量
14120
审稿时长
17.72 days
期刊介绍: Sustainability (ISSN 2071-1050) is an international and cross-disciplinary scholarly, open access journal of environmental, cultural, economic and social sustainability of human beings, which provides an advanced forum for studies related to sustainability and sustainable development. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research relating to natural sciences, social sciences and humanities in as much detail as possible in order to promote scientific predictions and impact assessments of global change and development. Full experimental and methodical details must be provided so that the results can be reproduced.
期刊最新文献
Optimizing EV Powertrain Performance and Sustainability through Constraint Prioritization in Nonlinear Model Predictive Control of Semi-Active Bidirectional DC-DC Converter with HESS Fairness in E-Recruitment: Examining Procedural Justice Perceptions and Job Seekers’ Intentions The Impact of Waste Application on the Reclamation and Biological Life of Degraded Soils Influence of Terrain on Windblown Sand Flow Field Characteristics around Railway Culverts Improvement of Spatio-Temporal Inconsistency of Time Series Land Cover Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1