A second life for the crystallographic structure of Berenil-dodecanucleotide complex: a computational revisitation thirty years after its publication

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Medicinal Chemistry Research Pub Date : 2024-09-03 DOI:10.1007/s00044-024-03299-9
Gianluca Novello, Andrea Dodaro, Silvia Menin, Chiara Cavastracci Strascia, Mattia Sturlese, Veronica Salmaso, Stefano Moro
{"title":"A second life for the crystallographic structure of Berenil-dodecanucleotide complex: a computational revisitation thirty years after its publication","authors":"Gianluca Novello, Andrea Dodaro, Silvia Menin, Chiara Cavastracci Strascia, Mattia Sturlese, Veronica Salmaso, Stefano Moro","doi":"10.1007/s00044-024-03299-9","DOIUrl":null,"url":null,"abstract":"<p>This study revisits the pioneering work of Professor Neidle, and co-workers, on the crystal structure of complexes formed between groove binders and DNA sequences. The original research revealed a DNA-ligand complex consisting of a dodecanucleotide bound with Berenil [1,3-bis(4′-amidinophenyl)-triazene] an anti-trypanocidal drug. This article aims to delve deeper into the structural dynamics of this system, showcasing the role played by water molecules in stabilizing the interaction between the ligand and the DNA. With this work, we reevaluate the findings from the original crystallographic study by employing modern molecular dynamics techniques, including Supervised Molecular Dynamics (SuMD) for generating binding trajectories, Thermal Titration Molecular Dynamics for assessing unbinding events, and AquaMMapS to identify regions occupied by stationary water molecules. The study addresses a minor and a major groove binding mode and assesses their strength and specificity using TTMD simulations, generating unbinding trajectories. This comprehensive approach integrates the understanding of the interaction of this DNA-ligand complex, which originated with the valuable work of Professor Neidle, resulting in an in-depth insight into the pivotal role of water molecules with this DNA, a behavior detected and extendable even to other nucleic acid complexes.</p>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"30 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00044-024-03299-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study revisits the pioneering work of Professor Neidle, and co-workers, on the crystal structure of complexes formed between groove binders and DNA sequences. The original research revealed a DNA-ligand complex consisting of a dodecanucleotide bound with Berenil [1,3-bis(4′-amidinophenyl)-triazene] an anti-trypanocidal drug. This article aims to delve deeper into the structural dynamics of this system, showcasing the role played by water molecules in stabilizing the interaction between the ligand and the DNA. With this work, we reevaluate the findings from the original crystallographic study by employing modern molecular dynamics techniques, including Supervised Molecular Dynamics (SuMD) for generating binding trajectories, Thermal Titration Molecular Dynamics for assessing unbinding events, and AquaMMapS to identify regions occupied by stationary water molecules. The study addresses a minor and a major groove binding mode and assesses their strength and specificity using TTMD simulations, generating unbinding trajectories. This comprehensive approach integrates the understanding of the interaction of this DNA-ligand complex, which originated with the valuable work of Professor Neidle, resulting in an in-depth insight into the pivotal role of water molecules with this DNA, a behavior detected and extendable even to other nucleic acid complexes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝雷尼尔-十二核苷酸复合物晶体结构的第二次生命:发表 30 年后的计算再研究
这项研究再次回顾了 Neidle 教授及其合作者在沟槽结合剂与 DNA 序列之间形成的复合物晶体结构方面的开创性工作。最初的研究揭示了一种由十二核苷酸与抗锥虫病药物 Berenil [1,3-双(4′-脒苯基)-三氮烯] 结合而成的 DNA 配体复合物。本文旨在深入探讨这一系统的结构动力学,展示水分子在稳定配体与 DNA 之间的相互作用中所起的作用。在这项工作中,我们采用了现代分子动力学技术,包括生成结合轨迹的监督分子动力学(SuMD)、评估解结合事件的热滴定分子动力学以及识别静止水分子占据区域的 AquaMMapS,重新评估了原始晶体学研究的发现。该研究针对小沟和大沟结合模式,利用热滴定分子动力学模拟评估其强度和特异性,并生成解除结合轨迹。这种全面的方法整合了对 DNA 配体复合物相互作用的理解,这种理解源于 Neidle 教授的宝贵研究成果,它深入揭示了水分子在 DNA 中的关键作用,这种行为已被检测到,甚至可扩展到其他核酸复合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medicinal Chemistry Research
Medicinal Chemistry Research 医学-医药化学
CiteScore
4.70
自引率
3.80%
发文量
162
审稿时长
5.0 months
期刊介绍: Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.
期刊最新文献
Synthesis of new Michael acceptors with cinnamamide scaffold as potential anti-breast cancer agents: cytotoxicity and ADME in silico studies Iridoid for drug discovery: Structural modifications and bioactivity studies Synthesis and antiproliferative activity of 7-substituted amide estradiol derivatives Correction: Substituted furan-carboxamide and Schiff base derivatives as potential hypolipidemic compounds: evaluation in Triton WR-1339 hyperlipidemic rat model Quinazolinone-based subchemotypes for targeting HIV-1 capsid protein: design and synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1