首页 > 最新文献

Medicinal Chemistry Research最新文献

英文 中文
Synthesis, bacteria activity and molecular simulation of D-galactose-conjugated thiosemicarbazones of 3-aryl-4-formylsydnones
IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-12-17 DOI: 10.1007/s00044-024-03363-4
Nguyen Dinh Thanh, Vu Ngoc Toan, Duong Ngoc Toan, Vu Minh Trang

A series of D-galactose-conjugated substituted 4-formylsydnone thiosemicarbazones 4a-j were designed and synthesized from appropriate substituted 3-aryl-4-formylsydnones 2a-j and tetra-O-acetyl-β-d-galactopyranose 3. These synthesized thioureas exhibited the remarkable inhibitory activity against both selected Gram-(+)- and Gram-(–)-bacteria. Amongst them, thiosemicarbazones 4a,b,c,f,j were the most potent inhibitors against Gram-(+) bacterial strains with MIC values of 0.78–1.56 μg/mL, while compounds 4b,c,g,j had the most inhibitions against Gram-(–) bacterial ones with MIC values of 0.78–1.56 μg/mL. The thiosemicarbazones 4b, 4c, 4f and that contain simultaneously two methyl or methyl/nitro substituents on benzene ring exhibited the strong inhibition against both Gram-(+), including MRSA bacterium, and Gram-(–) bacterial strains with MIC values of 0.78–1.56 μg/mL. In addition, compound 4j had strongest potent inhibitory activity against S. aureus DNA Gyrase and compound 4b was the strongest inhibitor against S. aureus Topoisomerase IV. Almost all of the most potential compounds had low toxicity to WI-38 normal cell line. The in silico studies, including predictive ADMET and induced fit docking simulations, for the most potential compounds were performed. Molecular dynamics simulations applied for two most potential complexes 4b/URN and 4j/4URO to understand their mechanism of active interaction for these respective enzymes.

{"title":"Synthesis, bacteria activity and molecular simulation of D-galactose-conjugated thiosemicarbazones of 3-aryl-4-formylsydnones","authors":"Nguyen Dinh Thanh,&nbsp;Vu Ngoc Toan,&nbsp;Duong Ngoc Toan,&nbsp;Vu Minh Trang","doi":"10.1007/s00044-024-03363-4","DOIUrl":"10.1007/s00044-024-03363-4","url":null,"abstract":"<div><p>A series of D-galactose-conjugated substituted 4-formylsydnone thiosemicarbazones <b>4a-j</b> were designed and synthesized from appropriate substituted 3-aryl-4-formylsydnones <b>2a-j</b> and tetra-<i>O</i>-acetyl-β-<span>d</span>-galactopyranose <b>3</b>. These synthesized thioureas exhibited the remarkable inhibitory activity against both selected Gram-(+)- and Gram-(–)-bacteria. Amongst them, thiosemicarbazones <b>4a</b>,<b>b</b>,<b>c</b>,<b>f</b>,<b>j</b> were the most potent inhibitors against Gram-(+) bacterial strains with MIC values of 0.78–1.56 μg/mL, while compounds <b>4b</b>,<b>c</b>,<b>g</b>,<b>j</b> had the most inhibitions against Gram-(–) bacterial ones with MIC values of 0.78–1.56 μg/mL. The thiosemicarbazones <b>4b</b>, <b>4c</b>, <b>4</b> <b>f</b> and that contain simultaneously two methyl or methyl/nitro substituents on benzene ring exhibited the strong inhibition against both Gram-(+), including MRSA bacterium, and Gram-(–) bacterial strains with MIC values of 0.78–1.56 μg/mL. In addition, compound <b>4j</b> had strongest potent inhibitory activity against <i>S. aureus</i> DNA Gyrase and compound <b>4b</b> was the strongest inhibitor against <i>S. aureus</i> Topoisomerase IV. Almost all of the most potential compounds had low toxicity to WI-38 normal cell line. The in silico studies, including predictive ADMET and induced fit docking simulations, for the most potential compounds were performed. Molecular dynamics simulations applied for two most potential complexes <b>4b</b>/URN and <b>4j</b>/4URO to understand their mechanism of active interaction for these respective enzymes.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 2","pages":"476 - 495"},"PeriodicalIF":2.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, characterization, and evaluation of KDM4B inhibitors to attenuate inflammatory host immune response in periodontitis
IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-12-13 DOI: 10.1007/s00044-024-03362-5
Kathleen A. Garrabrant, Amelia B. Furbish, Jonathan M. Turner, Ivett Pina Gomez, Catherine M. Mills, Abhiram Maddi, Yuri K. Peterson

Periodontal disease begins with bacterial plaque buildup in the oral cavity, inciting an inflammatory response that results in subsequent tissue damage. Even after standard treatment like scaling and root planning (SRP) to remove plaque and biofilm, the host immune response can remain hyper-active, perpetuating further tissue destruction. In these cases, aggressive periodontitis is resistant to SRP and the inflammatory response may persist, even in the absence of plaque, presenting a significant clinical challenge. Previous experiments have provided a validated model of periodontal inflammation by exposing murine macrophages to lipopolysaccharide (LPS) from Aggregatibacter actinomycetemcomitans (Aa), a pathogen linked to aggressive periodontitis. Using this model, we have previously demonstrated that the periodontal disease microenvironment triggers epigenetic changes, notably heightened lysine-specific demethylase 4B (KDM4B) activity. Data indicate that the KDM4B inhibitor ML324 can reverse the macrophage-mediated pro-inflammatory response induced by Aa LPS in vitro, providing compelling evidence for KDM4B as a rational therapeutic target for periodontal disease. In the present studies, a cohort of compounds was developed as potential KDM4B inhibitors. Synthesis and characterization of derivatives led to the discovery of compound 14 with an IC50 of 170 nM against KDM4B and immunosuppressive activity in the Aa LPS challenge model. These results suggest KDM4B inhibitors as potential therapeutic agents for modulating the immune response for periodontal disease.

牙周病始于口腔中的细菌性牙菌斑堆积,引发炎症反应,导致随后的组织损伤。即使经过洗牙和根管治疗(SRP)等标准治疗以去除牙菌斑和生物膜,宿主的免疫反应仍会过度活跃,导致组织进一步破坏。在这种情况下,侵袭性牙周炎会对 SRP 产生抵抗力,即使在没有牙菌斑的情况下,炎症反应也会持续存在,从而给临床带来巨大挑战。以前的实验提供了一个有效的牙周炎症模型,将小鼠巨噬细胞暴露于与侵袭性牙周炎相关的病原体--放线菌(Aa)的脂多糖(LPS)中。利用这一模型,我们先前已证明牙周病微环境会引发表观遗传学变化,特别是赖氨酸特异性去甲基化酶 4B (KDM4B) 活性的增强。数据表明,KDM4B 抑制剂 ML324 可以逆转 Aa LPS 在体外诱导的巨噬细胞介导的促炎反应,为 KDM4B 成为牙周病的合理治疗靶点提供了令人信服的证据。在本研究中,一批化合物被开发为潜在的 KDM4B 抑制剂。通过对衍生物的合成和表征,发现了化合物 14,它对 KDM4B 的 IC50 值为 170 nM,在 Aa LPS 挑战模型中具有免疫抑制活性。这些结果表明,KDM4B 抑制剂是调节牙周病免疫反应的潜在治疗药物。
{"title":"Synthesis, characterization, and evaluation of KDM4B inhibitors to attenuate inflammatory host immune response in periodontitis","authors":"Kathleen A. Garrabrant,&nbsp;Amelia B. Furbish,&nbsp;Jonathan M. Turner,&nbsp;Ivett Pina Gomez,&nbsp;Catherine M. Mills,&nbsp;Abhiram Maddi,&nbsp;Yuri K. Peterson","doi":"10.1007/s00044-024-03362-5","DOIUrl":"10.1007/s00044-024-03362-5","url":null,"abstract":"<div><p>Periodontal disease begins with bacterial plaque buildup in the oral cavity, inciting an inflammatory response that results in subsequent tissue damage. Even after standard treatment like scaling and root planning (SRP) to remove plaque and biofilm, the host immune response can remain hyper-active, perpetuating further tissue destruction. In these cases, aggressive periodontitis is resistant to SRP and the inflammatory response may persist, even in the absence of plaque, presenting a significant clinical challenge. Previous experiments have provided a validated model of periodontal inflammation by exposing murine macrophages to lipopolysaccharide (LPS) from <i>Aggregatibacter actinomycetemcomitans</i> (<i>Aa</i>), a pathogen linked to aggressive periodontitis. Using this model, we have previously demonstrated that the periodontal disease microenvironment triggers epigenetic changes, notably heightened lysine-specific demethylase 4B (KDM4B) activity. Data indicate that the KDM4B inhibitor ML324 can reverse the macrophage-mediated pro-inflammatory response induced by <i>Aa</i> LPS in vitro, providing compelling evidence for KDM4B as a rational therapeutic target for periodontal disease. In the present studies, a cohort of compounds was developed as potential KDM4B inhibitors. Synthesis and characterization of derivatives led to the discovery of compound <b>14</b> with an IC<sub>50</sub> of 170 nM against KDM4B and immunosuppressive activity in the <i>Aa</i> LPS challenge model. These results suggest KDM4B inhibitors as potential therapeutic agents for modulating the immune response for periodontal disease.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"33 12","pages":"2448 - 2462"},"PeriodicalIF":2.6,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00044-024-03362-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CYP3A4 drug metabolism considerations in pediatric pharmacotherapy
IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-12-05 DOI: 10.1007/s00044-024-03360-7
Marin Vander Schaaf, Kyrle Luth, Danyelle M. Townsend, Katherine H. Chessman, Catherine M. Mills, Sandra S. Garner, Yuri K. Peterson

Cytochrome P450 3A4 (CYP3A4) is a crucial enzyme involved in the Phase I metabolism of numerous medications used in clinical practice. Its potential significance in pediatric pharmacotherapy is underscored by the unique metabolic profile of children, which differs markedly from adults, especially in neonates, infants, and young children due to developmental changes in enzyme activity. This review explores the critical role of CYP3A4 in the metabolism of drugs used in the pediatric population, with a particular focus on combination drug therapies. Given the high potential for drug-drug interactions in combination therapies, understanding the modulation of CYP3A4 activity is essential for optimizing therapeutic outcomes and minimizing adverse effects. This paper further examines the structural similarities between these medications and bergamottin, a known CYP3A4 inhibitor found in citric fruits such as grapefruit. Variability in CYP3A4 activity, influenced by genetic polymorphisms, developmental stage, and external factors, necessitates careful consideration in the prescribing and management of drugs in children. This review corroborates the need for personalized medicine approaches and enhanced pharmacovigilance to ensure the safe and effective use of CYP3A4-metabolized drugs in the pediatric population.

Graphical Abstract

细胞色素 P450 3A4 (CYP3A4) 是一种重要的酶,参与临床上许多药物的 I 期代谢。由于儿童独特的代谢特征,特别是新生儿、婴儿和幼儿体内酶活性的发育变化,儿童的代谢特征与成人明显不同,这就凸显了 CYP3A4 在儿科药物治疗中的潜在意义。本综述探讨了 CYP3A4 在儿科用药代谢中的关键作用,尤其关注联合用药治疗。鉴于联合用药疗法中药物间相互作用的可能性很大,了解 CYP3A4 活性的调节对于优化治疗效果和减少不良反应至关重要。本文进一步研究了这些药物与佛手柑素之间的结构相似性,佛手柑素是一种已知的 CYP3A4 抑制剂,存在于葡萄柚等柠檬类水果中。受基因多态性、发育阶段和外部因素的影响,CYP3A4 活性存在差异,因此在给儿童开处方和管理药物时必须慎重考虑。本综述证实了个性化医疗方法和加强药物警戒的必要性,以确保在儿童群体中安全有效地使用 CYP3A4 代谢药物。
{"title":"CYP3A4 drug metabolism considerations in pediatric pharmacotherapy","authors":"Marin Vander Schaaf,&nbsp;Kyrle Luth,&nbsp;Danyelle M. Townsend,&nbsp;Katherine H. Chessman,&nbsp;Catherine M. Mills,&nbsp;Sandra S. Garner,&nbsp;Yuri K. Peterson","doi":"10.1007/s00044-024-03360-7","DOIUrl":"10.1007/s00044-024-03360-7","url":null,"abstract":"<div><p>Cytochrome P450 3A4 (CYP3A4) is a crucial enzyme involved in the Phase I metabolism of numerous medications used in clinical practice. Its potential significance in pediatric pharmacotherapy is underscored by the unique metabolic profile of children, which differs markedly from adults, especially in neonates, infants, and young children due to developmental changes in enzyme activity. This review explores the critical role of CYP3A4 in the metabolism of drugs used in the pediatric population, with a particular focus on combination drug therapies. Given the high potential for drug-drug interactions in combination therapies, understanding the modulation of CYP3A4 activity is essential for optimizing therapeutic outcomes and minimizing adverse effects. This paper further examines the structural similarities between these medications and bergamottin, a known CYP3A4 inhibitor found in citric fruits such as grapefruit. Variability in CYP3A4 activity, influenced by genetic polymorphisms, developmental stage, and external factors, necessitates careful consideration in the prescribing and management of drugs in children. This review corroborates the need for personalized medicine approaches and enhanced pharmacovigilance to ensure the safe and effective use of CYP3A4-metabolized drugs in the pediatric population.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"33 12","pages":"2221 - 2235"},"PeriodicalIF":2.6,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00044-024-03360-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Memory of Professor Patrick M. Woster (1955–2023): a loss to the field of medicinal chemistry
IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-11-29 DOI: 10.1007/s00044-024-03359-0
David P. Rotella
{"title":"In Memory of Professor Patrick M. Woster (1955–2023): a loss to the field of medicinal chemistry","authors":"David P. Rotella","doi":"10.1007/s00044-024-03359-0","DOIUrl":"10.1007/s00044-024-03359-0","url":null,"abstract":"","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"33 12","pages":"2181 - 2186"},"PeriodicalIF":2.6,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating omics data for personalized medicine in treating psoriasis
IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-11-27 DOI: 10.1007/s00044-024-03355-4
Manish Ramchandani, Amit Kumar Goyal

Psoriasis is a chronic, multifactorial skin disorder characterized by the hyperproliferation of keratinocytes and persistent inflammation. It is driven by a complex interplay of genetic, immunological, and environmental factors. The heterogeneous nature of this disease presents significant challenges for effective diagnosis and treatment. Recent advancements in omics technologies such as genomics, transcriptomics, proteomics, and metabolomics have revolutionized our ability to understand the molecular basis of psoriasis. These technologies offer novel insights into disease mechanisms, identifying potential biomarkers for early diagnosis, disease progression, and therapeutic response. Further, longitudinal studies utilizing real-world patient data and advanced computational models will enable dynamic disease monitoring, offering prospects for predictive diagnostics and earlier intervention. As personalized treatment plans become more sophisticated, the evolution of omics-guided therapeutic strategies could revolutionize the standard of care in psoriasis, fostering a transition from reactive to preventative approaches. This review aims to elucidate the critical role of omics approaches in unraveling the intricate biological pathways involved in psoriasis and exploring how specific omics data serve as powerful tools for classifying patients and tailoring treatment options based on individual molecular profiles. Further, longitudinal studies utilizing real-world patient data and advanced computational models will enable dynamic disease monitoring, offering prospects for predictive diagnostics and earlier intervention. As personalized treatment plans become more sophisticated, the evolution of omics-guided therapeutic strategies could revolutionize the standard of care in psoriasis, fostering a transition from reactive to preventative approaches. Addressing current challenges in data integration and clinical applicability will be pivotal in advancing towards this future, with the potential to significantly improve patient outcomes and quality of life.

{"title":"Integrating omics data for personalized medicine in treating psoriasis","authors":"Manish Ramchandani,&nbsp;Amit Kumar Goyal","doi":"10.1007/s00044-024-03355-4","DOIUrl":"10.1007/s00044-024-03355-4","url":null,"abstract":"<div><p>Psoriasis is a chronic, multifactorial skin disorder characterized by the hyperproliferation of keratinocytes and persistent inflammation. It is driven by a complex interplay of genetic, immunological, and environmental factors. The heterogeneous nature of this disease presents significant challenges for effective diagnosis and treatment. Recent advancements in omics technologies such as genomics, transcriptomics, proteomics, and metabolomics have revolutionized our ability to understand the molecular basis of psoriasis. These technologies offer novel insights into disease mechanisms, identifying potential biomarkers for early diagnosis, disease progression, and therapeutic response. Further, longitudinal studies utilizing real-world patient data and advanced computational models will enable dynamic disease monitoring, offering prospects for predictive diagnostics and earlier intervention. As personalized treatment plans become more sophisticated, the evolution of omics-guided therapeutic strategies could revolutionize the standard of care in psoriasis, fostering a transition from reactive to preventative approaches. This review aims to elucidate the critical role of omics approaches in unraveling the intricate biological pathways involved in psoriasis and exploring how specific omics data serve as powerful tools for classifying patients and tailoring treatment options based on individual molecular profiles. Further, longitudinal studies utilizing real-world patient data and advanced computational models will enable dynamic disease monitoring, offering prospects for predictive diagnostics and earlier intervention. As personalized treatment plans become more sophisticated, the evolution of omics-guided therapeutic strategies could revolutionize the standard of care in psoriasis, fostering a transition from reactive to preventative approaches. Addressing current challenges in data integration and clinical applicability will be pivotal in advancing towards this future, with the potential to significantly improve patient outcomes and quality of life.</p></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 2","pages":"340 - 356"},"PeriodicalIF":2.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and biological assessment of triazolo-quinazoline carbothioamide derivatives for p38 MAP kinase inhibition: in-silico and in-vitro approaches
IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-11-27 DOI: 10.1007/s00044-024-03348-3
CH Keerthi, Ramesh Kola, Divya Pingili, Archana Awasthi, DSNBK Prasanth, Chamakuri Kantlam

A series of 4-Alkyl-5-oxo-N-(pyridin-3-yl)-4,5-dihydro [1,2,3] triazolo[1,5-a] quinazoline-3-carbothioamide compounds (8a-8k) were synthesized as p38 MAP kinase inhibitors, which could potentially be used as anticancer agents. The synthesized compounds were assessed for their effectiveness in inhibiting cancer using the MCF-7 cancer cell line. The results showed that compound 8a had the highest potency, with an IC50 value of 39.76 ± 0.25 µM. Compound 8f and 8d exhibited noteworthy activity, with IC50 values of 40.43 ± 2.04 µM and 42.15 ± 2.15 µM, respectively. Compound 8a was found to effectively bind with the active site of p38α MAP kinase, with the PDB ID 1W7H. The docking score was found to be −8.8 kcal/mol. The ADME experiments, following Lipinski’s rule of five and Ergan’s egg graph, showed that all the synthesized compounds had excellent oral bioavailability and acceptable stomach absorption. Compound 8a stood out as the most potent drug in the series, exhibiting considerable docking affinity, ADME profile, and p38 MAP kinase inhibitory action. The findings indicated that compound 8a has promising p38 kinase inhibition and can be a possible therapeutic drug for further investigation.

{"title":"Synthesis and biological assessment of triazolo-quinazoline carbothioamide derivatives for p38 MAP kinase inhibition: in-silico and in-vitro approaches","authors":"CH Keerthi,&nbsp;Ramesh Kola,&nbsp;Divya Pingili,&nbsp;Archana Awasthi,&nbsp;DSNBK Prasanth,&nbsp;Chamakuri Kantlam","doi":"10.1007/s00044-024-03348-3","DOIUrl":"10.1007/s00044-024-03348-3","url":null,"abstract":"<div><p>A series of 4-Alkyl-5-oxo-N-(pyridin-3-yl)-4,5-dihydro [1,2,3] triazolo[1,5-a] quinazoline-3-carbothioamide compounds (<b>8a-8k</b>) were synthesized as p38 MAP kinase inhibitors, which could potentially be used as anticancer agents. The synthesized compounds were assessed for their effectiveness in inhibiting cancer using the MCF-7 cancer cell line. The results showed that compound <b>8a</b> had the highest potency, with an IC<sub>50</sub> value of 39.76 ± 0.25 µM. Compound <b>8f</b> and <b>8d</b> exhibited noteworthy activity, with IC<sub>50</sub> values of 40.43 ± 2.04 µM and 42.15 ± 2.15 µM, respectively. Compound <b>8a</b> was found to effectively bind with the active site of p38α MAP kinase, with the PDB ID 1W7H. The docking score was found to be −8.8 kcal/mol. The ADME experiments, following Lipinski’s rule of five and Ergan’s egg graph, showed that all the synthesized compounds had excellent oral bioavailability and acceptable stomach absorption. Compound <b>8a</b> stood out as the most potent drug in the series, exhibiting considerable docking affinity, ADME profile, and p38 MAP kinase inhibitory action. The findings indicated that compound <b>8a</b> has promising p38 kinase inhibition and can be a possible therapeutic drug for further investigation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 2","pages":"432 - 444"},"PeriodicalIF":2.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, synthesis, stereochemical characterization, in vitro α-glucosidase, and α-amylase inhibition and in silico studies of novel pyrazole-hydrazide hydrazones
IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-11-25 DOI: 10.1007/s00044-024-03335-8
Issam Ameziane El Hassani, Salma Mortada, Njabulo J. Gumede, Hamza Assila, Ali Alsalme, Afaf Oulmidi, My El Abbes Faouzi, Khalid Karrouchi, M’hammed Ansar

In this work, a novel series of fifteen pyrazole-linked hydrazide-hydrazone derivatives (4a-o) were designed, synthesized, characterized, and evaluated for their antihyperglycemic activity against α-amylase and α-glucosidase. In vitro results revealed that all synthesized compounds (4a-o) showed good to excellent antihyperglycemic activity with IC50 in the range of 30.58 ± 0.56–290.70 ± 2.77 μM for α-glucosidase and in the range of 29.08 ± 0.56–160.70 ± 0.80 μM, as compared to the standard inhibitor acarbose (IC50(α-glucosidase) = 98.12 ± 2.10 µM and IC50(α-amylase) = 126.50 ± 2.01 µM). Among the series, compound 4m with hydroxy group in para position at phenyl ring was also found as the most potent inhibitor of α-amylase and α-glucosidase with IC50 values of 29.08 ± 0.86 and 30.58 ± 0.56 μM, respectively, indicating their better potency than the standard acarbose. In silico molecular docking and molecular dynamic simulations further confirmed the binding modes and binding affinities of compound 4m and acarbose. The Structure-Activity Relationship (SAR) analysis of the effects of some functional groups in the co-structure of 4m were confirmed by IFD and MDS for both α-amylase and α-glucosidase inhibitor recognition.

{"title":"Design, synthesis, stereochemical characterization, in vitro α-glucosidase, and α-amylase inhibition and in silico studies of novel pyrazole-hydrazide hydrazones","authors":"Issam Ameziane El Hassani,&nbsp;Salma Mortada,&nbsp;Njabulo J. Gumede,&nbsp;Hamza Assila,&nbsp;Ali Alsalme,&nbsp;Afaf Oulmidi,&nbsp;My El Abbes Faouzi,&nbsp;Khalid Karrouchi,&nbsp;M’hammed Ansar","doi":"10.1007/s00044-024-03335-8","DOIUrl":"10.1007/s00044-024-03335-8","url":null,"abstract":"<div><p>In this work, a novel series of fifteen pyrazole-linked hydrazide-hydrazone derivatives (<b>4a-o</b>) were designed, synthesized, characterized, and evaluated for their antihyperglycemic activity against α-amylase and α-glucosidase. In vitro results revealed that all synthesized compounds (4a-o) showed good to excellent antihyperglycemic activity with IC<sub>50</sub> in the range of 30.58 ± 0.56–290.70 ± 2.77 μM for α-glucosidase and in the range of 29.08 ± 0.56–160.70 ± 0.80 μM, as compared to the standard inhibitor acarbose (IC<sub>50(α-glucosidase)</sub> = 98.12 ± 2.10 µM and IC<sub>50(α-amylase)</sub> = 126.50 ± 2.01 µM). Among the series, compound <b>4m</b> with hydroxy group in <i>para</i> position at phenyl ring was also found as the most potent inhibitor of α-amylase and α-glucosidase with IC<sub>50</sub> values of 29.08 ± 0.86 and 30.58 ± 0.56 μM, respectively, indicating their better potency than the standard acarbose. In silico molecular docking and molecular dynamic simulations further confirmed the binding modes and binding affinities of compound <b>4m</b> and acarbose. The Structure-Activity Relationship (SAR) analysis of the effects of some functional groups in the co-structure of <b>4m</b> were confirmed by IFD and MDS for both α-amylase and α-glucosidase inhibitor recognition.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 1","pages":"252 - 271"},"PeriodicalIF":2.6,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
α-Glucosidase inhibitory activities of aromatic compounds from the rhizomes of Alpinia galanga
IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-11-23 DOI: 10.1007/s00044-024-03357-2
Yueh-Hung Cheng, Po-Chun Chen, Zakhele M. Dlamini, Jia-Wei Li, Bongani S. Dlamini, Yu-Kuo Chen, Chi-I Chang

Inhibition of α-glucosidase is a widely recognized approach for managing hyperglycemia, particularly postprandial glucose spikes. In this study, the α-glucosidase inhibitory activity and interaction mechanisms of aromatic compounds isolated from the rhizomes of Alpinia galanga were investigated using the p-nitrophenol-α-D-glucopyranoside (pNPG) bioassay and molecular docking. The isolated aromatic compounds (14) showed significant α-glucosidase inhibitory activity with IC50 values between 25 and 104 µM compared to the positive control acarbose (IC50 = 1236.42 ± 1.30 µM). The experimental data showed that the most potent inhibitor of α-glucosidase (E)-p-coumaryl alcohol-γ-O-methyl ether (3) inhibited the enzyme via a mixed-type mechanism, with an IC50 value of 25.00 ± 1.01 µM. Molecular docking indicated that compound 3 decreased the catalytic efficiency of α-glucosidase by competitively binding to the active pocket, thereby blocking the substrate. The binding activity is mainly mediated by hydrogen bonds and hydrophobic interactions. The results suggest that these aromatic compounds from A. galanga could serve as potential therapeutic agents for the control of postprandial hyperglycemia and the treatment of type 2 diabetes.

{"title":"α-Glucosidase inhibitory activities of aromatic compounds from the rhizomes of Alpinia galanga","authors":"Yueh-Hung Cheng,&nbsp;Po-Chun Chen,&nbsp;Zakhele M. Dlamini,&nbsp;Jia-Wei Li,&nbsp;Bongani S. Dlamini,&nbsp;Yu-Kuo Chen,&nbsp;Chi-I Chang","doi":"10.1007/s00044-024-03357-2","DOIUrl":"10.1007/s00044-024-03357-2","url":null,"abstract":"<div><p>Inhibition of α-glucosidase is a widely recognized approach for managing hyperglycemia, particularly postprandial glucose spikes. In this study, the α-glucosidase inhibitory activity and interaction mechanisms of aromatic compounds isolated from the rhizomes of <i>Alpinia galanga</i> were investigated using the <i>p</i>-nitrophenol-α-D-glucopyranoside (<i>p</i>NPG) bioassay and molecular docking. The isolated aromatic compounds (<b>1</b>–<b>4</b>) showed significant α-glucosidase inhibitory activity with IC<sub>50</sub> values between 25 and 104 µM compared to the positive control acarbose (IC<sub>50</sub> = 1236.42 ± 1.30 µM). The experimental data showed that the most potent inhibitor of α-glucosidase (<i>E</i>)-<i>p</i>-coumaryl alcohol-γ-<i>O</i>-methyl ether (<b>3</b>) inhibited the enzyme via a mixed-type mechanism, with an IC<sub>50</sub> value of 25.00 ± 1.01 µM. Molecular docking indicated that compound <b>3</b> decreased the catalytic efficiency of α-glucosidase by competitively binding to the active pocket, thereby blocking the substrate. The binding activity is mainly mediated by hydrogen bonds and hydrophobic interactions. The results suggest that these aromatic compounds from <i>A. galanga</i> could serve as potential therapeutic agents for the control of postprandial hyperglycemia and the treatment of type 2 diabetes.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 2","pages":"466 - 475"},"PeriodicalIF":2.6,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fragment-based screen for inhibitors of Escherichia coli N5-CAIR mutase 基于片段的大肠杆菌 N5-CAIR 突变酶抑制剂筛选
IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-11-23 DOI: 10.1007/s00044-024-03356-3
Marcella F. Sharma, Steven M. Firestine

Although purine biosynthesis is a primary metabolic pathway, there are fundamental differences between how purines are synthesized in microbes versus humans. In humans, the purine intermediate, 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) is directly synthesized from 5-aminoimidazole ribonucleotide (AIR) and carbon dioxide by the enzyme AIR carboxylase. In bacteria, yeast and fungi, CAIR is synthesized from AIR via an intermediate N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) by the enzyme N5-CAIR mutase. The difference in pathways between humans and microbes indicate that N5-CAIR mutase is a potential antimicrobial drug target. To identify inhibitors of E. coli N5-CAIR mutase, a fragment-based screening campaign was conducted using a thermal shift assay and a library of 4,500 fragments. Twenty-eight fragments were initially identified that displayed dose-dependent binding to N5-CAIR mutase with Kd values ranging from 9–309 µM. Of the 28, 14 were obtained from commercial sources for retesting; however, only 5 showed dose-dependent binding to N5-CAIR mutase. The five fragments were assessed for their ability to inhibit enzyme activity. Four out of the 5 showed inhibition with Ki values of 4.8 to 159 µM. All fragments contained nitrogen heterocycles with 3 out of the 4 containing 5-membered heterocycles like those found in the substrate of the enzyme. The identified fragments show similarities to compounds identified from studies on B. anthracis N5-CAIR mutase and human AIR carboxylase suggesting a common pharmacophore.

{"title":"A fragment-based screen for inhibitors of Escherichia coli N5-CAIR mutase","authors":"Marcella F. Sharma,&nbsp;Steven M. Firestine","doi":"10.1007/s00044-024-03356-3","DOIUrl":"10.1007/s00044-024-03356-3","url":null,"abstract":"<div><p>Although purine biosynthesis is a primary metabolic pathway, there are fundamental differences between how purines are synthesized in microbes versus humans. In humans, the purine intermediate, 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) is directly synthesized from 5-aminoimidazole ribonucleotide (AIR) and carbon dioxide by the enzyme AIR carboxylase. In bacteria, yeast and fungi, CAIR is synthesized from AIR via an intermediate N<sup>5</sup>-carboxyaminoimidazole ribonucleotide (N<sup>5</sup>-CAIR) by the enzyme N<sup>5</sup>-CAIR mutase. The difference in pathways between humans and microbes indicate that N<sup>5</sup>-CAIR mutase is a potential antimicrobial drug target. To identify inhibitors of <i>E. coli</i> N<sup>5</sup>-CAIR mutase, a fragment-based screening campaign was conducted using a thermal shift assay and a library of 4,500 fragments. Twenty-eight fragments were initially identified that displayed dose-dependent binding to N<sup>5</sup>-CAIR mutase with K<sub>d</sub> values ranging from 9–309 µM. Of the 28, 14 were obtained from commercial sources for retesting; however, only 5 showed dose-dependent binding to N<sup>5</sup>-CAIR mutase. The five fragments were assessed for their ability to inhibit enzyme activity. Four out of the 5 showed inhibition with K<sub>i</sub> values of 4.8 to 159 µM. All fragments contained nitrogen heterocycles with 3 out of the 4 containing 5-membered heterocycles like those found in the substrate of the enzyme. The identified fragments show similarities to compounds identified from studies on <i>B. anthracis</i> N<sup>5</sup>-CAIR mutase and human AIR carboxylase suggesting a common pharmacophore.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"33 12","pages":"2463 - 2475"},"PeriodicalIF":2.6,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oligonucleotides: evolution and innovation 寡核苷酸:演变与创新
IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Pub Date : 2024-11-21 DOI: 10.1007/s00044-024-03352-7
Amani A. Mohammed, Danah AlShaer, Othman Al Musaimi

Oligonucleotides, comprising single or double strands of RNA or DNA, are vital chemical compounds used in various laboratory and clinical applications. They represent a significant class of therapeutics with a rapidly expanding range of uses. Between 1998 and 2023, 19 oligonucleotides have received approval from the U.S. Food and Drug Administration (FDA). Their synthesis methods have undergone significant evolution over time. This review examines several oligonucleotide synthesis techniques, including phosphodiester, phosphotriester, and phosphoramidite approaches. It begins with a discussion of an early synthesis method involving a phosphoryl chloride intermediate, which proved unstable and prone to hydrolysis. The review then transitions to the solid-phase synthesis method, which uses polymer resins as a solid support, emphasizing its advantages over both phosphotriester and phosphoramidite techniques. This is followed by an exploration of recent advancements in oligonucleotide enzymatic synthesis, concluding with a discussion on modifications to bases, sugars, and backbones designed to improve their properties and therapeutic potential.

{"title":"Oligonucleotides: evolution and innovation","authors":"Amani A. Mohammed,&nbsp;Danah AlShaer,&nbsp;Othman Al Musaimi","doi":"10.1007/s00044-024-03352-7","DOIUrl":"10.1007/s00044-024-03352-7","url":null,"abstract":"<div><p>Oligonucleotides, comprising single or double strands of RNA or DNA, are vital chemical compounds used in various laboratory and clinical applications. They represent a significant class of therapeutics with a rapidly expanding range of uses. Between 1998 and 2023, 19 oligonucleotides have received approval from the U.S. Food and Drug Administration (FDA). Their synthesis methods have undergone significant evolution over time. This review examines several oligonucleotide synthesis techniques, including phosphodiester, phosphotriester, and phosphoramidite approaches. It begins with a discussion of an early synthesis method involving a phosphoryl chloride intermediate, which proved unstable and prone to hydrolysis. The review then transitions to the solid-phase synthesis method, which uses polymer resins as a solid support, emphasizing its advantages over both phosphotriester and phosphoramidite techniques. This is followed by an exploration of recent advancements in oligonucleotide enzymatic synthesis, concluding with a discussion on modifications to bases, sugars, and backbones designed to improve their properties and therapeutic potential.</p></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"33 12","pages":"2204 - 2220"},"PeriodicalIF":2.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00044-024-03352-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Medicinal Chemistry Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1