Structural insights into G-quadruplex binding by metal complexes: implications for drug design

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL Medicinal Chemistry Research Pub Date : 2024-09-07 DOI:10.1007/s00044-024-03309-w
Tayler D. Prieto Otoya, Kane T. McQuaid, Christine J. Cardin
{"title":"Structural insights into G-quadruplex binding by metal complexes: implications for drug design","authors":"Tayler D. Prieto Otoya, Kane T. McQuaid, Christine J. Cardin","doi":"10.1007/s00044-024-03309-w","DOIUrl":null,"url":null,"abstract":"<p>G-quadruplex DNA secondary structures are formed in guanine-rich sequences and have been found to play an important role in regulating different biological processes. Indeed, guanine-rich sequences with the potential to form G-quadruplexes are present in different regions in the human genome, such as telomeres and the promoter region of different genes, including oncogene promoters. Thus, the rational design of small molecules capable of interacting, stabilising or damaging with high specificity these secondary structures represents an important strategy for the development of potent anticancer drugs. In this review, we highlight the interaction between G-quadruplex structures and their ligands, specifically emphasising the role of metal complexes. We provide detailed structural insight into the binding modes of metal complex-G-quadruplex interaction by analysing 18 sets of coordinates from X-ray and NMR currently available in the Protein Data Bank (PDB), with a primary focus on X-ray structural data.</p>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"86 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00044-024-03309-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

G-quadruplex DNA secondary structures are formed in guanine-rich sequences and have been found to play an important role in regulating different biological processes. Indeed, guanine-rich sequences with the potential to form G-quadruplexes are present in different regions in the human genome, such as telomeres and the promoter region of different genes, including oncogene promoters. Thus, the rational design of small molecules capable of interacting, stabilising or damaging with high specificity these secondary structures represents an important strategy for the development of potent anticancer drugs. In this review, we highlight the interaction between G-quadruplex structures and their ligands, specifically emphasising the role of metal complexes. We provide detailed structural insight into the binding modes of metal complex-G-quadruplex interaction by analysing 18 sets of coordinates from X-ray and NMR currently available in the Protein Data Bank (PDB), with a primary focus on X-ray structural data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属复合物结合 G 型四倍体的结构洞察:对药物设计的影响
在富含鸟嘌呤的序列中形成的 G 型四叠体 DNA 二级结构在调节不同的生物过程中发挥着重要作用。事实上,在人类基因组的不同区域,如端粒和不同基因(包括癌基因启动子)的启动子区域,都存在可能形成 G-四叠体的富鸟嘌呤序列。因此,合理设计能够与这些二级结构相互作用、稳定或高特异性地破坏这些二级结构的小分子是开发强效抗癌药物的重要策略。在这篇综述中,我们重点介绍了 G 型四叠体结构与其配体之间的相互作用,特别强调了金属复合物的作用。通过分析蛋白质数据库(PDB)中现有的 18 组 X 射线和核磁共振坐标,我们从结构上详细揭示了金属复合物与 G 型四叉结构相互作用的结合模式,其中主要侧重于 X 射线结构数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medicinal Chemistry Research
Medicinal Chemistry Research 医学-医药化学
CiteScore
4.70
自引率
3.80%
发文量
162
审稿时长
5.0 months
期刊介绍: Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.
期刊最新文献
Synthesis of new Michael acceptors with cinnamamide scaffold as potential anti-breast cancer agents: cytotoxicity and ADME in silico studies Iridoid for drug discovery: Structural modifications and bioactivity studies Synthesis and antiproliferative activity of 7-substituted amide estradiol derivatives Correction: Substituted furan-carboxamide and Schiff base derivatives as potential hypolipidemic compounds: evaluation in Triton WR-1339 hyperlipidemic rat model Quinazolinone-based subchemotypes for targeting HIV-1 capsid protein: design and synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1