Induced sexual reproduction ex situ reveals bidirectional sex change of the coral Montastraea cavernosa

IF 2.7 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Coral Reefs Pub Date : 2024-08-31 DOI:10.1007/s00338-024-02546-0
Krista V. Laforest, Chelsea G. Petrik, Ashlee A. Hylton, Rachel L. Ionata, E. Murphy McDonald, Morgan L. Short, Joana Figueiredo
{"title":"Induced sexual reproduction ex situ reveals bidirectional sex change of the coral Montastraea cavernosa","authors":"Krista V. Laforest, Chelsea G. Petrik, Ashlee A. Hylton, Rachel L. Ionata, E. Murphy McDonald, Morgan L. Short, Joana Figueiredo","doi":"10.1007/s00338-024-02546-0","DOIUrl":null,"url":null,"abstract":"<p>Induction of gonad maturation and synchronized spawning of corals ex situ has been mostly used to propagate corals for restoration, but it also provides a unique opportunity to study the reproductive biology of species. We present, for the first time, the induction of gonad maturation and synchronous spawning of the coral <i>Montastraea cavernosa</i> in a laboratory. This was achieved by mimicking the annual temperature, sun and moon cycles experienced in the northern portion of Florida’s Coral Reef. Similarly to field observations, peak spawning of <i>M. cavernosa</i> colonies in the laboratory occurred 5–10 nights after the full moons of July, August, and/or September, 75–125 min after sunset. This coral species was known as gonochoric, meaning colonies are either females (release eggs) or males (release sperm). Yet, three consecutive years observing the same colonies ex situ revealed that these corals are capable of changing sexes annually, and they can do so in both directions. Spawning observations and histology showed corals shifting from male to female, others shifting from female to male, and several changing sex one year and reverting to their original sex in the following year. The sex change was not related to size, nor likely socially driven. A greater number of colonies was observed to shift from female to male when food provision was reduced. Further studies are required to determine if food availability drives sex change in this species.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coral Reefs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02546-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Induction of gonad maturation and synchronized spawning of corals ex situ has been mostly used to propagate corals for restoration, but it also provides a unique opportunity to study the reproductive biology of species. We present, for the first time, the induction of gonad maturation and synchronous spawning of the coral Montastraea cavernosa in a laboratory. This was achieved by mimicking the annual temperature, sun and moon cycles experienced in the northern portion of Florida’s Coral Reef. Similarly to field observations, peak spawning of M. cavernosa colonies in the laboratory occurred 5–10 nights after the full moons of July, August, and/or September, 75–125 min after sunset. This coral species was known as gonochoric, meaning colonies are either females (release eggs) or males (release sperm). Yet, three consecutive years observing the same colonies ex situ revealed that these corals are capable of changing sexes annually, and they can do so in both directions. Spawning observations and histology showed corals shifting from male to female, others shifting from female to male, and several changing sex one year and reverting to their original sex in the following year. The sex change was not related to size, nor likely socially driven. A greater number of colonies was observed to shift from female to male when food provision was reduced. Further studies are required to determine if food availability drives sex change in this species.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位诱导有性生殖揭示了海绵珊瑚的双向性变化
诱导珊瑚的性腺成熟和原位同步产卵主要用于繁殖珊瑚以进行修复,但它也为研究物种的生殖生物学提供了一个独特的机会。我们首次展示了在实验室中诱导洞穴珊瑚(Montastraea cavernosa)性腺成熟和同步产卵的过程。这是通过模拟佛罗里达珊瑚礁北部地区每年的气温、太阳和月亮周期来实现的。与实地观察结果类似,实验室中海绵鳕的产卵高峰出现在 7 月、8 月和/或 9 月满月后的 5-10 个夜晚,日落后 75-125 分钟。众所周知,这种珊瑚物种是雌雄同体的,也就是说,珊瑚群要么是雌性(释放卵子),要么是雄性(释放精子)。然而,通过连续三年对同一珊瑚群进行实地观察发现,这些珊瑚每年都能改变性别,而且是双向的。产卵观察和组织学研究显示,珊瑚从雄性变为雌性,其他珊瑚从雌性变为雄性,还有一些珊瑚在一年中改变性别,第二年又恢复原来的性别。性别改变与珊瑚的大小无关,也不可能是由社会驱动的。当食物供应减少时,观察到有更多的群落由雌性变为雄性。还需要进一步研究,以确定食物供应是否会促使该物种发生性别变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Coral Reefs
Coral Reefs 生物-海洋与淡水生物学
CiteScore
6.80
自引率
11.40%
发文量
111
审稿时长
4-8 weeks
期刊介绍: Coral Reefs, the Journal of the International Coral Reef Society, presents multidisciplinary literature across the broad fields of reef studies, publishing analytical and theoretical papers on both modern and ancient reefs. These encourage the search for theories about reef structure and dynamics, and the use of experimentation, modeling, quantification and the applied sciences. Coverage includes such subject areas as population dynamics; community ecology of reef organisms; energy and nutrient flows; biogeochemical cycles; physiology of calcification; reef responses to natural and anthropogenic influences; stress markers in reef organisms; behavioural ecology; sedimentology; diagenesis; reef structure and morphology; evolutionary ecology of the reef biota; palaeoceanography of coral reefs and coral islands; reef management and its underlying disciplines; molecular biology and genetics of coral; aetiology of disease in reef-related organisms; reef responses to global change, and more.
期刊最新文献
Spatial structuring of coral traits along a subtropical-temperate transition zone persists despite localised signs of tropicalisation Reproductive ecology of fire corals in the northern Red Sea eDNA metabarcoding captures a decline of coral diversity at Taiping Island after an outbreak of Crown-of-Thorns starfish Long-term dynamics of hard coral cover across Indonesia Habitat trumps biogeography in structuring coral reef fishes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1