{"title":"Comparing methods for estimating causal treatment effects of administrative health data: A plasmode simulation study","authors":"Vanessa Ress, Eva-Maria Wild","doi":"10.1002/hec.4891","DOIUrl":null,"url":null,"abstract":"<p>Estimating the causal effects of health policy interventions is crucial for policymaking but is challenging when using real-world administrative health care data due to a lack of methodological guidance. To help fill this gap, we conducted a plasmode simulation using such data from a recent policy initiative launched in a deprived urban area in Germany. Our aim was to evaluate and compare the following methods for estimating causal effects: propensity score matching, inverse probability of treatment weighting, and entropy balancing, all combined with difference-in-differences analysis, augmented inverse probability weighting, and targeted maximum likelihood estimation. Additionally, we estimated nuisance parameters using regression models and an ensemble learner called superlearner. We focused on treatment effects related to the number of physician visits, total health care cost, and hospitalization. While each approach has its strengths and weaknesses, our results demonstrate that the superlearner generally worked well for handling nuisance terms in large covariate sets when combined with doubly robust estimation methods to estimate the causal contrast of interest. In contrast, regression-based nuisance parameter estimation worked best in small covariate sets when combined with singly robust methods.</p>","PeriodicalId":12847,"journal":{"name":"Health economics","volume":"33 12","pages":"2757-2777"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hec.4891","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health economics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hec.4891","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Estimating the causal effects of health policy interventions is crucial for policymaking but is challenging when using real-world administrative health care data due to a lack of methodological guidance. To help fill this gap, we conducted a plasmode simulation using such data from a recent policy initiative launched in a deprived urban area in Germany. Our aim was to evaluate and compare the following methods for estimating causal effects: propensity score matching, inverse probability of treatment weighting, and entropy balancing, all combined with difference-in-differences analysis, augmented inverse probability weighting, and targeted maximum likelihood estimation. Additionally, we estimated nuisance parameters using regression models and an ensemble learner called superlearner. We focused on treatment effects related to the number of physician visits, total health care cost, and hospitalization. While each approach has its strengths and weaknesses, our results demonstrate that the superlearner generally worked well for handling nuisance terms in large covariate sets when combined with doubly robust estimation methods to estimate the causal contrast of interest. In contrast, regression-based nuisance parameter estimation worked best in small covariate sets when combined with singly robust methods.
期刊介绍:
This Journal publishes articles on all aspects of health economics: theoretical contributions, empirical studies and analyses of health policy from the economic perspective. Its scope includes the determinants of health and its definition and valuation, as well as the demand for and supply of health care; planning and market mechanisms; micro-economic evaluation of individual procedures and treatments; and evaluation of the performance of health care systems.
Contributions should typically be original and innovative. As a rule, the Journal does not include routine applications of cost-effectiveness analysis, discrete choice experiments and costing analyses.
Editorials are regular features, these should be concise and topical. Occasionally commissioned reviews are published and special issues bring together contributions on a single topic. Health Economics Letters facilitate rapid exchange of views on topical issues. Contributions related to problems in both developed and developing countries are welcome.