{"title":"Transformer fault identification method based on GASF‐AlexNet‐MSA transfer learning","authors":"Xin Zhang, Kaiyue Yang, Lei Jia","doi":"10.1002/cta.4218","DOIUrl":null,"url":null,"abstract":"The transformer is an important part of the power system and ensures the stable operation of the power grid and electricity safety key equipment. With the increase in electricity demand, it is of great significance to ensure the safe and reliable operation of transformers. However, the commonly used dissolved gas analysis (DGA) method in oil for transformer fault identification has significant drawbacks, so this paper proposes a transformer fault identification method based on GASF‐AlexNet‐MSA transfer learning. The use of GASF to convert one‐dimensional dissolved gas analysis (DGA) data into two‐dimensional images, thus enhancing the comprehensiveness of data representation; the utilization of a pre‐trained AlexNet model through transfer learning, which enables the method to efficiently extract complex features such as textures, shapes, and edges; and the introduction of multiple self‐attention mechanisms that further refine the feature extraction and focuses on the key features, thereby improving the accuracy of fault identification. The proposed model achieves a remarkable accuracy of 97.04% on the publicly DGA dataset, which is 5.19% higher than AlexNet, 6.48% higher than VGG16, 6.12% higher than GoogLeNet, 2.41% higher than ResNet, and 3.71% higher than MobileNet. These results underscore the model's strong feature extraction capabilities and its superior performance in transformer fault identification, providing a valuable reference for enhancing the reliability and safety of power systems.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":"22 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4218","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The transformer is an important part of the power system and ensures the stable operation of the power grid and electricity safety key equipment. With the increase in electricity demand, it is of great significance to ensure the safe and reliable operation of transformers. However, the commonly used dissolved gas analysis (DGA) method in oil for transformer fault identification has significant drawbacks, so this paper proposes a transformer fault identification method based on GASF‐AlexNet‐MSA transfer learning. The use of GASF to convert one‐dimensional dissolved gas analysis (DGA) data into two‐dimensional images, thus enhancing the comprehensiveness of data representation; the utilization of a pre‐trained AlexNet model through transfer learning, which enables the method to efficiently extract complex features such as textures, shapes, and edges; and the introduction of multiple self‐attention mechanisms that further refine the feature extraction and focuses on the key features, thereby improving the accuracy of fault identification. The proposed model achieves a remarkable accuracy of 97.04% on the publicly DGA dataset, which is 5.19% higher than AlexNet, 6.48% higher than VGG16, 6.12% higher than GoogLeNet, 2.41% higher than ResNet, and 3.71% higher than MobileNet. These results underscore the model's strong feature extraction capabilities and its superior performance in transformer fault identification, providing a valuable reference for enhancing the reliability and safety of power systems.
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.