{"title":"Exploring the Frontier of Space Medicine: The Nexus of Bone Regeneration and Astronautic Health in Microgravity Conditions","authors":"Behnaz Banimohamad-Shotorbani, Arezou Azizsoltani, Zahra Khalaj, Maryam Rafiei-Baharloo, Armita Ghotaslou, Sonia Fathi-karkan","doi":"10.1007/s12217-024-10136-6","DOIUrl":null,"url":null,"abstract":"<div><p>Microgravity, the near absence of gravity experienced in space, is a major health concern for astronauts, leading to significant bone loss. This weakens their skeletal system, impacting performance during missions and hindering post-mission rehabilitation. To address this challenge, this paper explores the potential of advanced cellular research and regenerative medicine for mitigating bone loss in astronauts. We analyze the biological mechanisms affecting bone turnover markers and their implications for space travel. By examining key studies on the effects of spaceflight on bone structure in rodents and humans, we highlight the complex relationship between bone density and the microgravity environment. While acknowledging limitations like limited spaceflight simulators and the early stage of extraterrestrial research facilities, we propose a strategic shift towards advanced cellular research specifically tailored to microgravity. This approach focuses on understanding how microgravity disrupts bone formation and resorption at the cellular level. Tailor-made cellular laboratories are crucial for this research. These specialized labs would simulate microgravity and incorporate advanced technology to study the behavior and function of bone-forming cells (osteoblasts) and stem cells under these conditions. By investigating cellular mechanisms and potential therapeutic targets, this research holds promise for developing novel bone regeneration strategies for astronauts. This could involve stimulating bone formation or promoting the activity of stem cells to repair and strengthen bones in space. The success of this approach relies on collaboration between clinical applications and molecular signaling research. It also underscores the need for a skilled team of scientist-astronauts to conduct in vivo bone regeneration research under microgravity conditions. This multifaceted approach has the potential to not only improve astronaut health and well-being, but also pave the way for a sustainable human presence in space. Furthermore, advancements in cellular therapies for bone health under microgravity could have applications on Earth for treating conditions like osteoporosis.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10136-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Microgravity, the near absence of gravity experienced in space, is a major health concern for astronauts, leading to significant bone loss. This weakens their skeletal system, impacting performance during missions and hindering post-mission rehabilitation. To address this challenge, this paper explores the potential of advanced cellular research and regenerative medicine for mitigating bone loss in astronauts. We analyze the biological mechanisms affecting bone turnover markers and their implications for space travel. By examining key studies on the effects of spaceflight on bone structure in rodents and humans, we highlight the complex relationship between bone density and the microgravity environment. While acknowledging limitations like limited spaceflight simulators and the early stage of extraterrestrial research facilities, we propose a strategic shift towards advanced cellular research specifically tailored to microgravity. This approach focuses on understanding how microgravity disrupts bone formation and resorption at the cellular level. Tailor-made cellular laboratories are crucial for this research. These specialized labs would simulate microgravity and incorporate advanced technology to study the behavior and function of bone-forming cells (osteoblasts) and stem cells under these conditions. By investigating cellular mechanisms and potential therapeutic targets, this research holds promise for developing novel bone regeneration strategies for astronauts. This could involve stimulating bone formation or promoting the activity of stem cells to repair and strengthen bones in space. The success of this approach relies on collaboration between clinical applications and molecular signaling research. It also underscores the need for a skilled team of scientist-astronauts to conduct in vivo bone regeneration research under microgravity conditions. This multifaceted approach has the potential to not only improve astronaut health and well-being, but also pave the way for a sustainable human presence in space. Furthermore, advancements in cellular therapies for bone health under microgravity could have applications on Earth for treating conditions like osteoporosis.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology