Implementation of finite element scheme to study thermal and mass transportation in water-based nanofluid model under quadratic thermal radiation in a disk

IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Mechanics of Time-Dependent Materials Pub Date : 2024-08-23 DOI:10.1007/s11043-024-09736-x
Muhammad Sohail, Kamaleldin Abodayeh, Umar Nazir
{"title":"Implementation of finite element scheme to study thermal and mass transportation in water-based nanofluid model under quadratic thermal radiation in a disk","authors":"Muhammad Sohail,&nbsp;Kamaleldin Abodayeh,&nbsp;Umar Nazir","doi":"10.1007/s11043-024-09736-x","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the unlimited usage and involvement of nanoparticles, researchers got much interest in their study. This research discusses the utilization of a hybrid nanofluid model mixed in water-based liquid in a rotating disk. The flow is considered with the involvement of Hall and ion slip effects in a rotating disk. Thermal transport is discussed by engaging quadratic thermal radiation phenomenon along with Joule heating. The boundary layer equations are generated in the form of coupled PDEs and are converted into a set of ODEs by engaging similarity variables. The derived converted ODEs are highly nonlinear and have been solved numerically via the finite element method. The involvement of numerous emerging parameters against velocity, temperature and concentration is plotted and tabulated and their insight physics is discussed in detail. The obtained results confirm the reliability of finite element scheme.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1049 - 1072"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09736-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the unlimited usage and involvement of nanoparticles, researchers got much interest in their study. This research discusses the utilization of a hybrid nanofluid model mixed in water-based liquid in a rotating disk. The flow is considered with the involvement of Hall and ion slip effects in a rotating disk. Thermal transport is discussed by engaging quadratic thermal radiation phenomenon along with Joule heating. The boundary layer equations are generated in the form of coupled PDEs and are converted into a set of ODEs by engaging similarity variables. The derived converted ODEs are highly nonlinear and have been solved numerically via the finite element method. The involvement of numerous emerging parameters against velocity, temperature and concentration is plotted and tabulated and their insight physics is discussed in detail. The obtained results confirm the reliability of finite element scheme.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实施有限元方案,研究圆盘二次热辐射条件下水基纳米流体模型中的热量和质量传输
由于纳米粒子的无限使用和参与,研究人员对其研究产生了浓厚的兴趣。本研究讨论了在旋转盘中的水基液体中混合使用混合纳米流体模型。考虑了旋转盘中的霍尔效应和离子滑移效应。通过二次热辐射现象和焦耳加热讨论了热传输问题。边界层方程以耦合 PDE 的形式生成,并通过相似变量转换成一组 ODE。衍生转换后的 ODE 具有高度非线性,并通过有限元法进行数值求解。大量新出现的参数与速度、温度和浓度的关系被绘制成图表,并详细讨论了这些参数对物理学的影响。所得结果证实了有限元方案的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanics of Time-Dependent Materials
Mechanics of Time-Dependent Materials 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
8.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties. The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.
期刊最新文献
Analysis of solid lubricating materials microstructures properties in the frame of cylindrical coordinates system and reduced micromorphic model Quadratic regression model for response surface methodology based on sensitivity analysis of heat transport in mono nanofluids with suction and dual stretching in a rectangular frame Thermomechanical characterisation and plane stress linear viscoelastic modelling of ethylene-tetra-fluoroethylene foils Finite element modelling of ultrasonic assisted hot pressing of metal powder Implementation of finite element scheme to study thermal and mass transportation in water-based nanofluid model under quadratic thermal radiation in a disk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1