DeepTV: A neural network approach for total variation minimization

Andreas Langer, Sara Behnamian
{"title":"DeepTV: A neural network approach for total variation minimization","authors":"Andreas Langer, Sara Behnamian","doi":"arxiv-2409.05569","DOIUrl":null,"url":null,"abstract":"Neural network approaches have been demonstrated to work quite well to solve\npartial differential equations in practice. In this context approaches like\nphysics-informed neural networks and the Deep Ritz method have become popular.\nIn this paper, we propose a similar approach to solve an infinite-dimensional\ntotal variation minimization problem using neural networks. We illustrate that\nthe resulting neural network problem does not have a solution in general. To\ncircumvent this theoretic issue, we consider an auxiliary neural network\nproblem, which indeed has a solution, and show that it converges in the sense\nof $\\Gamma$-convergence to the original problem. For computing a numerical\nsolution we further propose a discrete version of the auxiliary neural network\nproblem and again show its $\\Gamma$-convergence to the original\ninfinite-dimensional problem. In particular, the $\\Gamma$-convergence proof\nsuggests a particular discretization of the total variation. Moreover, we\nconnect the discrete neural network problem to a finite difference\ndiscretization of the infinite-dimensional total variation minimization\nproblem. Numerical experiments are presented supporting our theoretical\nfindings.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural network approaches have been demonstrated to work quite well to solve partial differential equations in practice. In this context approaches like physics-informed neural networks and the Deep Ritz method have become popular. In this paper, we propose a similar approach to solve an infinite-dimensional total variation minimization problem using neural networks. We illustrate that the resulting neural network problem does not have a solution in general. To circumvent this theoretic issue, we consider an auxiliary neural network problem, which indeed has a solution, and show that it converges in the sense of $\Gamma$-convergence to the original problem. For computing a numerical solution we further propose a discrete version of the auxiliary neural network problem and again show its $\Gamma$-convergence to the original infinite-dimensional problem. In particular, the $\Gamma$-convergence proof suggests a particular discretization of the total variation. Moreover, we connect the discrete neural network problem to a finite difference discretization of the infinite-dimensional total variation minimization problem. Numerical experiments are presented supporting our theoretical findings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepTV:总变异最小化的神经网络方法
在实践中,神经网络方法在求解偏微分方程时已被证明非常有效。在这种情况下,物理信息神经网络和 Deep Ritz 方法等方法开始流行起来。在本文中,我们提出了一种类似的方法,利用神经网络解决无限维总变异最小化问题。本文提出了利用神经网络求解无限维总变异最小化问题的类似方法,并说明了由此产生的神经网络问题在一般情况下没有解。为了避免这个理论问题,我们考虑了一个辅助神经网络问题,它确实有一个解,并证明它在$\Gamma$-收敛的意义上收敛于原始问题。为了计算数值解,我们进一步提出了离散版的辅助神经网络问题,并再次证明了它与原始无限维问题的$\Gamma$收敛性。特别是,$\Gamma$-收敛证明提出了总变异的特定离散化。此外,我们还将离散神经网络问题与无限维总变化最小化问题的有限差分离散化联系起来。数值实验支持我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations Conditions aux limites fortement non lin{é}aires pour les {é}quations d'Euler de la dynamique des gaz Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals A novel Mortar Method Integration using Radial Basis Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1