Two-level trust-region method with random subspaces

Andrea Angino, Alena Kopaničáková, Rolf Krause
{"title":"Two-level trust-region method with random subspaces","authors":"Andrea Angino, Alena Kopaničáková, Rolf Krause","doi":"arxiv-2409.05479","DOIUrl":null,"url":null,"abstract":"We introduce a two-level trust-region method (TLTR) for solving unconstrained\nnonlinear optimization problems. Our method uses a composite iteration step,\nwhich is based on two distinct search directions. The first search direction is\nobtained through minimization in the full/high-resolution space, ensuring\nglobal convergence to a critical point. The second search direction is obtained\nthrough minimization in the randomly generated subspace, which, in turn, allows\nfor convergence acceleration. The efficiency of the proposed TLTR method is\ndemonstrated through numerical experiments in the field of machine learning","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a two-level trust-region method (TLTR) for solving unconstrained nonlinear optimization problems. Our method uses a composite iteration step, which is based on two distinct search directions. The first search direction is obtained through minimization in the full/high-resolution space, ensuring global convergence to a critical point. The second search direction is obtained through minimization in the randomly generated subspace, which, in turn, allows for convergence acceleration. The efficiency of the proposed TLTR method is demonstrated through numerical experiments in the field of machine learning
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有随机子空间的两级信任区域法
我们介绍了一种用于解决无约束非线性优化问题的两级信任区域法(TLTR)。我们的方法采用复合迭代步骤,基于两个不同的搜索方向。第一个搜索方向是通过在全分辨率/高分辨率空间中最小化来实现的,确保全局收敛到临界点。第二个搜索方向是通过在随机生成的子空间中最小化获得的,这反过来又可以加速收敛。通过在机器学习领域的数值实验,证明了所提出的 TLTR 方法的效率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations Conditions aux limites fortement non lin{é}aires pour les {é}quations d'Euler de la dynamique des gaz Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals A novel Mortar Method Integration using Radial Basis Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1