{"title":"Ultrafast Laser Irradiation Induced Oxidation of Dopant-Free Spiro-OMeTAD for Improving the Perovskite Solar Cells Performance","authors":"Jiaqi Meng, Xiangyu Chen, Weihan Li, Nianyao Chai, Zhongle Zeng, Yunfan Yue, Fengyi Zhao, Xuewen Wang","doi":"10.1002/eem2.12818","DOIUrl":null,"url":null,"abstract":"The exceptional photoelectric performance and high compatibility of perovskite materials render perovskite solar cells highly promising for extensive development, thus garnering significant attention. In perovskite solar cells, the hole transport layer plays a crucial role. For the commonly employed organic small molecule hole transport material Spiro-OMeTAD, a certain period of oxidation treatment is required to achieve complete transport performance. However, this posttreatment oxidation processes typically rely on ambient oxidation, which poses challenges in terms of precise control and leads to degradation of the perovskite light absorption layer. This approach fails to meet the demands for high efficiency and stability in practical application. Herein, the mechanism of ultrafast laser on Spiro-OMeTAD and the reaction process for laser-induced oxidation of it are investigated. PbI<sub>2</sub> at Perovskite/Spiro-OMeTAD interface breaks down to produce I<sub>2</sub> upon ultrafast laser irradiation and I<sub>2</sub> promote the oxidation process. Through the laser irradiation oxidation processing, a higher stability of perovskite solar cells is achieved. This work establishes a new approach toward oxidation treatment of Spiro-OMeTAD.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/eem2.12818","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The exceptional photoelectric performance and high compatibility of perovskite materials render perovskite solar cells highly promising for extensive development, thus garnering significant attention. In perovskite solar cells, the hole transport layer plays a crucial role. For the commonly employed organic small molecule hole transport material Spiro-OMeTAD, a certain period of oxidation treatment is required to achieve complete transport performance. However, this posttreatment oxidation processes typically rely on ambient oxidation, which poses challenges in terms of precise control and leads to degradation of the perovskite light absorption layer. This approach fails to meet the demands for high efficiency and stability in practical application. Herein, the mechanism of ultrafast laser on Spiro-OMeTAD and the reaction process for laser-induced oxidation of it are investigated. PbI2 at Perovskite/Spiro-OMeTAD interface breaks down to produce I2 upon ultrafast laser irradiation and I2 promote the oxidation process. Through the laser irradiation oxidation processing, a higher stability of perovskite solar cells is achieved. This work establishes a new approach toward oxidation treatment of Spiro-OMeTAD.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.