Bioinformatics challenges for profiling the microbiome in cancer: pitfalls and opportunities

IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Trends in Microbiology Pub Date : 2024-09-12 DOI:10.1016/j.tim.2024.08.011
Nicholas A. Bokulich, Michael S. Robeson
{"title":"Bioinformatics challenges for profiling the microbiome in cancer: pitfalls and opportunities","authors":"Nicholas A. Bokulich, Michael S. Robeson","doi":"10.1016/j.tim.2024.08.011","DOIUrl":null,"url":null,"abstract":"<p>Increasing evidence suggests that the human microbiome plays an important role in cancer risk and treatment. Untargeted ‘omics’ techniques have accelerated research into microbiome–cancer interactions, supporting the discovery of novel associations and mechanisms. However, these techniques require careful selection and use to avoid biases and other pitfalls. In this essay, we discuss selected challenges involved in the analysis of microbiome data in the context of cancer, including the application of machine learning (ML). We focus on DNA sequencing-based (e.g., metagenomics) methods, but many of the pitfalls and opportunities generalize to other omics technologies as well. We advocate for extended training opportunities, community standards, and best practices for sharing data and code to advance transparency and reproducibility in cancer microbiome research.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":"58 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2024.08.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing evidence suggests that the human microbiome plays an important role in cancer risk and treatment. Untargeted ‘omics’ techniques have accelerated research into microbiome–cancer interactions, supporting the discovery of novel associations and mechanisms. However, these techniques require careful selection and use to avoid biases and other pitfalls. In this essay, we discuss selected challenges involved in the analysis of microbiome data in the context of cancer, including the application of machine learning (ML). We focus on DNA sequencing-based (e.g., metagenomics) methods, but many of the pitfalls and opportunities generalize to other omics technologies as well. We advocate for extended training opportunities, community standards, and best practices for sharing data and code to advance transparency and reproducibility in cancer microbiome research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绘制癌症微生物组图谱的生物信息学挑战:陷阱与机遇
越来越多的证据表明,人类微生物组在癌症风险和治疗中发挥着重要作用。非靶向'omics'技术加速了微生物组与癌症相互作用的研究,为发现新的关联和机制提供了支持。然而,这些技术需要谨慎选择和使用,以避免偏差和其他陷阱。在本文中,我们将讨论在癌症背景下分析微生物组数据所面临的挑战,包括机器学习(ML)的应用。我们将重点放在基于 DNA 测序(如元基因组学)的方法上,但许多陷阱和机遇也适用于其他 omics 技术。我们提倡扩大培训机会、社区标准以及共享数据和代码的最佳实践,以提高癌症微生物组研究的透明度和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Microbiology
Trends in Microbiology 生物-生化与分子生物学
CiteScore
25.30
自引率
0.60%
发文量
193
审稿时长
6-12 weeks
期刊介绍: Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.
期刊最新文献
From advisors to mentors: fostering supportive mentorship in academia. Tea plant microorganisms in the improvement of tea quality. Short-chain fatty acids in viral infection: the underlying mechanisms, opportunities, and challenges. Bacteria-derived short-chain fatty acids as potential regulators of fungal commensalism and pathogenesis. Neutrophils - an understudied bystander in dengue?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1