How Good (Or Bad) Are LLMs at Detecting Misleading Visualizations?

Leo Yu-Ho Lo;Huamin Qu
{"title":"How Good (Or Bad) Are LLMs at Detecting Misleading Visualizations?","authors":"Leo Yu-Ho Lo;Huamin Qu","doi":"10.1109/TVCG.2024.3456333","DOIUrl":null,"url":null,"abstract":"In this study, we address the growing issue of misleading charts, a prevalent problem that undermines the integrity of information dissemination. Misleading charts can distort the viewer's perception of data, leading to misinterpretations and decisions based on false information. The development of effective automatic detection methods for misleading charts is an urgent field of research. The recent advancement of multimodal Large Language Models (LLMs) has introduced a promising direction for addressing this challenge. We explored the capabilities of these models in analyzing complex charts and assessing the impact of different prompting strategies on the models' analyses. We utilized a dataset of misleading charts collected from the internet by prior research and crafted nine distinct prompts, ranging from simple to complex, to test the ability of four different multimodal LLMs in detecting over 21 different chart issues. Through three experiments–from initial exploration to detailed analysis–we progressively gained insights into how to effectively prompt LLMs to identify misleading charts and developed strategies to address the scalability challenges encountered as we expanded our detection range from the initial five issues to 21 issues in the final experiment. Our findings reveal that multimodal LLMs possess a strong capability for chart comprehension and critical thinking in data interpretation. There is significant potential in employing multimodal LLMs to counter misleading information by supporting critical thinking and enhancing visualization literacy. This study demonstrates the applicability of LLMs in addressing the pressing concern of misleading charts.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 1","pages":"1116-1125"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10679256/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we address the growing issue of misleading charts, a prevalent problem that undermines the integrity of information dissemination. Misleading charts can distort the viewer's perception of data, leading to misinterpretations and decisions based on false information. The development of effective automatic detection methods for misleading charts is an urgent field of research. The recent advancement of multimodal Large Language Models (LLMs) has introduced a promising direction for addressing this challenge. We explored the capabilities of these models in analyzing complex charts and assessing the impact of different prompting strategies on the models' analyses. We utilized a dataset of misleading charts collected from the internet by prior research and crafted nine distinct prompts, ranging from simple to complex, to test the ability of four different multimodal LLMs in detecting over 21 different chart issues. Through three experiments–from initial exploration to detailed analysis–we progressively gained insights into how to effectively prompt LLMs to identify misleading charts and developed strategies to address the scalability challenges encountered as we expanded our detection range from the initial five issues to 21 issues in the final experiment. Our findings reveal that multimodal LLMs possess a strong capability for chart comprehension and critical thinking in data interpretation. There is significant potential in employing multimodal LLMs to counter misleading information by supporting critical thinking and enhancing visualization literacy. This study demonstrates the applicability of LLMs in addressing the pressing concern of misleading charts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LLM 在检测误导性可视化方面有多强(或多弱)?
在本研究中,我们探讨了误导性图表这一日益严重的问题,这是一个破坏信息传播完整性的普遍问题。误导性图表会扭曲浏览者对数据的感知,导致基于错误信息的误读和决策。开发有效的误导性图表自动检测方法是一个亟待解决的研究领域。最近,多模态大语言模型(LLM)的发展为应对这一挑战提供了一个很有前景的方向。我们探索了这些模型分析复杂图表的能力,并评估了不同提示策略对模型分析的影响。我们利用之前的研究从互联网上收集的误导性图表数据集,精心设计了九种不同的提示,从简单到复杂,测试了四种不同的多模态 LLM 检测超过 21 种不同图表问题的能力。通过三次实验--从最初的探索到详细的分析--我们逐步深入了解了如何有效地提示 LLM 识别误导性图表,并在最后一次实验中将检测范围从最初的 5 个问题扩大到 21 个问题时,制定了应对可扩展性挑战的策略。我们的研究结果表明,多模态 LLM 具备很强的图表理解能力和数据解读的批判性思维能力。通过支持批判性思维和提高可视化素养,采用多模态 LLM 来抵制误导性信息具有巨大的潜力。这项研究证明了 LLMs 在解决误导性图表这一紧迫问题方面的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List Errata to “DiffFit: Visually-Guided Differentiable Fitting of Molecule Structures to a Cryo-EM Map” The Census-Stub Graph Invariant Descriptor TimeLighting: Guided Exploration of 2D Temporal Network Projections Preface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1