The Census-Stub Graph Invariant Descriptor

Matt I. B. Oddo;Stephen Kobourov;Tamara Munzner
{"title":"The Census-Stub Graph Invariant Descriptor","authors":"Matt I. B. Oddo;Stephen Kobourov;Tamara Munzner","doi":"10.1109/TVCG.2024.3513275","DOIUrl":null,"url":null,"abstract":"An ‘invariant descriptor’ captures meaningful structural features of networks, useful where traditional visualizations, like node-link views, face challenges like the ’hairball phenomenon’ (inscrutable overlap of points and lines). Designing invariant descriptors involves balancing abstraction and information retention, as richer data summaries demand more storage and computational resources. Building on prior work, chiefly the BMatrix—a matrix descriptor visualized as the invariant ’network portrait’ heatmap—we introduce BFS-Census, a new algorithm computing our Census data structures: Census-Node, Census-Edge, and Census-Stub. Our experiments show Census-Stub, which focuses on ’stubs’ (half-edges), has orders of magnitude greater discerning power (ability to tell non-isomorphic graphs apart) than any other descriptor in this study, without a difficult trade-off: the substantial increase in resolution doesn't come at a commensurate cost in storage space or computation power. We also present new visualizations—our Hop-Census polylines and Census-Census trajectories—and evaluate them using real-world graphs, including a sensitivity analysis that shows graph topology change maps to visual Census change.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 3","pages":"1945-1961"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10786915/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An ‘invariant descriptor’ captures meaningful structural features of networks, useful where traditional visualizations, like node-link views, face challenges like the ’hairball phenomenon’ (inscrutable overlap of points and lines). Designing invariant descriptors involves balancing abstraction and information retention, as richer data summaries demand more storage and computational resources. Building on prior work, chiefly the BMatrix—a matrix descriptor visualized as the invariant ’network portrait’ heatmap—we introduce BFS-Census, a new algorithm computing our Census data structures: Census-Node, Census-Edge, and Census-Stub. Our experiments show Census-Stub, which focuses on ’stubs’ (half-edges), has orders of magnitude greater discerning power (ability to tell non-isomorphic graphs apart) than any other descriptor in this study, without a difficult trade-off: the substantial increase in resolution doesn't come at a commensurate cost in storage space or computation power. We also present new visualizations—our Hop-Census polylines and Census-Census trajectories—and evaluate them using real-world graphs, including a sensitivity analysis that shows graph topology change maps to visual Census change.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人口存根图不变描述符
“不变描述符”捕获了网络的有意义的结构特征,在传统的可视化(如节点链接视图)面临“毛球现象”(不可思议的点和线重叠)等挑战时非常有用。设计不变描述符需要平衡抽象和信息保留,因为更丰富的数据摘要需要更多的存储和计算资源。在先前工作的基础上,主要是bmatrix——一种矩阵描述符,被可视化为不变的“网络肖像”热图——我们引入了BFS-Census,一种计算我们的人口普查数据结构的新算法:人口普查节点、人口普查边缘和人口普查存根。我们的实验表明,专注于“存根”(半边)的Census-Stub具有比本研究中任何其他描述符更大的识别能力(区分非同构图的能力),而没有困难的权衡:分辨率的大幅提高并不是以相应的存储空间或计算能力成本为代价的。我们还提出了新的可视化-我们的跳跃-普查折线和普查-普查轨迹-并使用现实世界的图形评估它们,包括显示图形拓扑变化映射到视觉普查变化的敏感性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From Sketch to Reality: Enabling High-Quality, Cross-Category 3D Model Generation from Free-Hand Sketches with Minimal Data. Explorative Analysis of Dynamic Force Networks in 2D Photoelastic Disks Ensembles. DGM-RDW: Redirected Walking with Dynamic Geometric Mapping Between Environments. CoDA: Interactive Segmentation and Morphological Analysis of Dendroid Structures Exemplified on Stony Cold-Water Corals. Stable-Hair v2: Real-World Hair Transfer via Multiple-View Diffusion Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1