Estimation of marginal excess moments for Weibull-type distributions

IF 1.1 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Extremes Pub Date : 2024-09-02 DOI:10.1007/s10687-024-00494-0
Yuri Goegebeur, Armelle Guillou, Jing Qin
{"title":"Estimation of marginal excess moments for Weibull-type distributions","authors":"Yuri Goegebeur, Armelle Guillou, Jing Qin","doi":"10.1007/s10687-024-00494-0","DOIUrl":null,"url":null,"abstract":"<p>We consider the estimation of the marginal excess moment (<i>MEM</i>), which is defined for a random vector (<i>X</i>, <i>Y</i>) and a parameter <span>\\(\\beta &gt;0\\)</span> as <span>\\(\\mathbb {E}[(X-Q_{X}(1-p))_{+}^{\\beta }|Y&gt; Q_{Y}(1-p)]\\)</span> provided <span>\\(\\mathbb {E}|X|^{\\beta }&lt; \\infty \\)</span>, and where <span>\\(y_{+}:=\\max (0,y)\\)</span>, <span>\\(Q_{X}\\)</span> and <span>\\(Q_{Y}\\)</span> are the quantile functions of <i>X</i> and <i>Y</i> respectively, and <span>\\(p\\in (0,1)\\)</span>. Our interest is in the situation where the random variable <i>X</i> is of Weibull-type while the distribution of <i>Y</i> is kept general, the extreme dependence structure of (<i>X</i>, <i>Y</i>) converges to that of a bivariate extreme value distribution, and we let <span>\\(p \\downarrow 0\\)</span> as the sample size <span>\\(n \\rightarrow \\infty \\)</span>. By using extreme value arguments we introduce an estimator for the marginal excess moment and we derive its limiting distribution. The finite sample properties of the proposed estimator are evaluated with a simulation study and the practical applicability is illustrated on a dataset of wave heights and wind speeds.</p>","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"51 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10687-024-00494-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the estimation of the marginal excess moment (MEM), which is defined for a random vector (XY) and a parameter \(\beta >0\) as \(\mathbb {E}[(X-Q_{X}(1-p))_{+}^{\beta }|Y> Q_{Y}(1-p)]\) provided \(\mathbb {E}|X|^{\beta }< \infty \), and where \(y_{+}:=\max (0,y)\), \(Q_{X}\) and \(Q_{Y}\) are the quantile functions of X and Y respectively, and \(p\in (0,1)\). Our interest is in the situation where the random variable X is of Weibull-type while the distribution of Y is kept general, the extreme dependence structure of (XY) converges to that of a bivariate extreme value distribution, and we let \(p \downarrow 0\) as the sample size \(n \rightarrow \infty \). By using extreme value arguments we introduce an estimator for the marginal excess moment and we derive its limiting distribution. The finite sample properties of the proposed estimator are evaluated with a simulation study and the practical applicability is illustrated on a dataset of wave heights and wind speeds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
魏布尔型分布的边际超额矩估计
我们考虑对边际超额矩(MEM)进行估计,对于随机向量(X, Y)和参数 \(\beta >;0)定义为 \(\mathbb {E}[(X-Q_{X}(1-p))_{+}^{\beta }|Y> Q_{Y}(1-p)]\) ,前提是 \(\mathbb {E}|X|^{\beta }< \infty \),其中 \(y_{+}:=\max (0,y)\), (Q_{X}\)和(Q_{Y}\)分别是 X 和 Y 的量化函数,(p\in (0,1)\).我们感兴趣的是在随机变量 X 是 Weibull 型而 Y 的分布保持一般的情况下,(X, Y)的极值依赖结构收敛到双变量极值分布的极值依赖结构,我们让 (p (downarrow 0))作为样本大小 (n (rightarrow (infty))。通过使用极值论证,我们引入了边际超额矩的估计器,并推导出其极限分布。通过模拟研究评估了所提出的估计器的有限样本特性,并在波高和风速数据集上说明了其实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Extremes
Extremes MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.20
自引率
7.70%
发文量
15
审稿时长
>12 weeks
期刊介绍: Extremes publishes original research on all aspects of statistical extreme value theory and its applications in science, engineering, economics and other fields. Authoritative and timely reviews of theoretical advances and of extreme value methods and problems in important applied areas, including detailed case studies, are welcome and will be a regular feature. All papers are refereed. Publication will be swift: in particular electronic submission and correspondence is encouraged. Statistical extreme value methods encompass a very wide range of problems: Extreme waves, rainfall, and floods are of basic importance in oceanography and hydrology, as are high windspeeds and extreme temperatures in meteorology and catastrophic claims in insurance. The waveforms and extremes of random loads determine lifelengths in structural safety, corrosion and metal fatigue.
期刊最新文献
Semiparametric approaches for the inference of univariate and multivariate extremes Modern extreme value statistics for Utopian extremes. EVA (2023) Conference Data Challenge: Team Yalla A utopic adventure in the modelling of conditional univariate and multivariate extremes On Gaussian triangular arrays in the case of strong dependence Cross-validation on extreme regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1