Study on the Effect and Mechanism of Mold Temperature and Ceramic Particle Alumina on the Strength and Water Solubility of NaCl–Na2CO3 and NaCl–Na2SO4 Composite Cores
Xiaorou Ning, Keke Zuo, Yang Li, Wanting Guo, Xiao Peng, Jianguo Su, Lai Song, Weihua Liu, Tongyu Liu, Yuyan Ren
{"title":"Study on the Effect and Mechanism of Mold Temperature and Ceramic Particle Alumina on the Strength and Water Solubility of NaCl–Na2CO3 and NaCl–Na2SO4 Composite Cores","authors":"Xiaorou Ning, Keke Zuo, Yang Li, Wanting Guo, Xiao Peng, Jianguo Su, Lai Song, Weihua Liu, Tongyu Liu, Yuyan Ren","doi":"10.1007/s40962-024-01433-2","DOIUrl":null,"url":null,"abstract":"<p>In the process of pouring salt cores, it is crucial to select the appropriate mold temperature, which is essential for the shaping and strength of the salt cores. Additionally, salt cores need to undergo water-soluble cleaning after casting, which has certain requirements for their water solubility. In order to obtain composite water-soluble salt cores with a certain strength suitable for high-pressure die casting processes, sodium chloride, sodium sulfate, and sodium carbonate are used as salt core materials, with ceramic alumina particles as reinforcement materials. The influence of alumina on the performance of NaCl–Na<sub>2</sub>CO<sub>3</sub> and NaCl–Na<sub>2</sub>SO<sub>4</sub> composite salt cores was studied. Through molecular dynamics simulation calculations, the change curve of the adhesion work of salt cores at different mold temperatures was analyzed. Combining XRD detection results and comparative analysis of actual salt core flexural strength, it was found that sodium aluminate generated at high temperatures has a strong interface binding ability with other components in the salt core, which is a key factor affecting the strength of the salt core. Through experimental research combined with simulated calculations of water molecule adsorption at different salt core interfaces, it was found that with increasing water temperature, the water adsorption capacity of NaCl–Na<sub>2</sub>CO<sub>3</sub> and NaCl–Na<sub>2</sub>SO<sub>4</sub> salt cores gradually increases, leading to an accelerated water solubility rate. The addition of Al<sub>2</sub>O<sub>3</sub> reduces the water solubility rate of NaCl–Na<sub>2</sub>CO<sub>3</sub> and NaCl–Na<sub>2</sub>SO<sub>4</sub> salt cores, but significantly improves their strength. The addition of Al<sub>2</sub>O<sub>3</sub> enhances the NaCl–Na<sub>2</sub>CO<sub>3</sub> salt core due to the formation of highly water-soluble sodium aluminate, resulting in a certain improvement in water solubility rate.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":"32 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01433-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In the process of pouring salt cores, it is crucial to select the appropriate mold temperature, which is essential for the shaping and strength of the salt cores. Additionally, salt cores need to undergo water-soluble cleaning after casting, which has certain requirements for their water solubility. In order to obtain composite water-soluble salt cores with a certain strength suitable for high-pressure die casting processes, sodium chloride, sodium sulfate, and sodium carbonate are used as salt core materials, with ceramic alumina particles as reinforcement materials. The influence of alumina on the performance of NaCl–Na2CO3 and NaCl–Na2SO4 composite salt cores was studied. Through molecular dynamics simulation calculations, the change curve of the adhesion work of salt cores at different mold temperatures was analyzed. Combining XRD detection results and comparative analysis of actual salt core flexural strength, it was found that sodium aluminate generated at high temperatures has a strong interface binding ability with other components in the salt core, which is a key factor affecting the strength of the salt core. Through experimental research combined with simulated calculations of water molecule adsorption at different salt core interfaces, it was found that with increasing water temperature, the water adsorption capacity of NaCl–Na2CO3 and NaCl–Na2SO4 salt cores gradually increases, leading to an accelerated water solubility rate. The addition of Al2O3 reduces the water solubility rate of NaCl–Na2CO3 and NaCl–Na2SO4 salt cores, but significantly improves their strength. The addition of Al2O3 enhances the NaCl–Na2CO3 salt core due to the formation of highly water-soluble sodium aluminate, resulting in a certain improvement in water solubility rate.
期刊介绍:
The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).