E. Samuel, A. M. Samuel, H. W. Doty, S. Valtierra, F. H. Samuel
{"title":"Highlights on the Role of Fe, Sr, and Solidification Time on Porosity Formation in Al–Si Cast Alloys","authors":"E. Samuel, A. M. Samuel, H. W. Doty, S. Valtierra, F. H. Samuel","doi":"10.1007/s40962-024-01409-2","DOIUrl":null,"url":null,"abstract":"<p>The present study was undertaken to elaborate on the parameters controlling the microstructural characterization of A319.2 Al–Si alloys, as a function of iron content (0.12–0.8%), Sr addition (~250 ppm), and solidification time (586s vs 513s). For comparison, selected conditions were applied to A356.2 alloys. The use of a hot graphite mold and an end-chill mold provided different solidification rates along the liquid/solid interface, corresponding to DAS values in the range of ~23–85μm, corresponding to levels of 5, 10, 30, 50, and 100 mm above the chill end. Addition of strontium leads to fragmentation of β–Al<sub>5</sub>FeSi platelets. Under similar Fe level and solidification rate conditions, the A319.2 alloys exhibit larger pore sizes than the A356.2 alloys, due to the absence of the (Al–Al<sub>2</sub>Cu) reaction in the latter and hence longer solidification time. Four types of iron intermetallics were reported viz., δ-, α-, β-, and π-phases.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01409-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The present study was undertaken to elaborate on the parameters controlling the microstructural characterization of A319.2 Al–Si alloys, as a function of iron content (0.12–0.8%), Sr addition (~250 ppm), and solidification time (586s vs 513s). For comparison, selected conditions were applied to A356.2 alloys. The use of a hot graphite mold and an end-chill mold provided different solidification rates along the liquid/solid interface, corresponding to DAS values in the range of ~23–85μm, corresponding to levels of 5, 10, 30, 50, and 100 mm above the chill end. Addition of strontium leads to fragmentation of β–Al5FeSi platelets. Under similar Fe level and solidification rate conditions, the A319.2 alloys exhibit larger pore sizes than the A356.2 alloys, due to the absence of the (Al–Al2Cu) reaction in the latter and hence longer solidification time. Four types of iron intermetallics were reported viz., δ-, α-, β-, and π-phases.
期刊介绍:
The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).