Ethanol reduces grapevine water consumption by limiting transpiration

Neila Ait Kaci, Alice Diot, Beatrice Quinquiry, Olivier Yobregat, Anne Pellegrino, Pierre Maury, Christian Chervin
{"title":"Ethanol reduces grapevine water consumption by limiting transpiration","authors":"Neila Ait Kaci, Alice Diot, Beatrice Quinquiry, Olivier Yobregat, Anne Pellegrino, Pierre Maury, Christian Chervin","doi":"10.1101/2024.08.31.610611","DOIUrl":null,"url":null,"abstract":"Studies suggest that ethanol (EtOH), triggers plant adaptation to various stresses at low concentrations (10 microM to 10 mM). This study investigates whether EtOH induces drought acclimation in grapevine, as demonstrated previously in Arabidopsis, rice, and wheat. Preliminary results with bare root Gamay cuttings showed that those pre-treated with 10 microM EtOH aqueous solutions lost fewer leaves when deprived of water compared to controls. Subsequently, we ran a potted-cutting experiment with progressive soil water deficit. Plants pre-treated with EtOH solutions (0.4 and 250 mM) exhibited slower depletion of the fraction of transpirable soil water (FTSW), compared to controls. While 0.4 and 250 mM EtOH tended to decrease transpiration in early days, these EtOH pre-treated plants maintained higher leaf transpiration than controls after 10 days of soil water depletion. The transpiration response to FTSW was affected by EtOH application. EtOH pre-treatments limited plant leaf expansion without increasing leaf senescence, and increased root dry mass. The grapevine responses to EtOH priming followed typical hormesis curves. RNA-seq data revealed transcripts related to this EtOH priming effect. These results suggest that EtOH improves grapevine acclimation to drought, leading to potential water-savings in wine growing regions prone to high water shortages, linked to climate change.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.31.610611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Studies suggest that ethanol (EtOH), triggers plant adaptation to various stresses at low concentrations (10 microM to 10 mM). This study investigates whether EtOH induces drought acclimation in grapevine, as demonstrated previously in Arabidopsis, rice, and wheat. Preliminary results with bare root Gamay cuttings showed that those pre-treated with 10 microM EtOH aqueous solutions lost fewer leaves when deprived of water compared to controls. Subsequently, we ran a potted-cutting experiment with progressive soil water deficit. Plants pre-treated with EtOH solutions (0.4 and 250 mM) exhibited slower depletion of the fraction of transpirable soil water (FTSW), compared to controls. While 0.4 and 250 mM EtOH tended to decrease transpiration in early days, these EtOH pre-treated plants maintained higher leaf transpiration than controls after 10 days of soil water depletion. The transpiration response to FTSW was affected by EtOH application. EtOH pre-treatments limited plant leaf expansion without increasing leaf senescence, and increased root dry mass. The grapevine responses to EtOH priming followed typical hormesis curves. RNA-seq data revealed transcripts related to this EtOH priming effect. These results suggest that EtOH improves grapevine acclimation to drought, leading to potential water-savings in wine growing regions prone to high water shortages, linked to climate change.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乙醇通过限制蒸腾作用减少葡萄树的耗水量
研究表明,乙醇(EtOH)在低浓度(10 微摩尔至 10 毫摩尔)时可引发植物对各种胁迫的适应。正如之前在拟南芥、水稻和小麦中证明的那样,本研究调查了乙醇是否能诱导葡萄藤适应干旱。对裸根加美葡萄插条的初步研究结果表明,与对照组相比,预先用10微摩尔EtOH水溶液处理过的插条在缺水时失去的叶子更少。随后,我们进行了盆栽扦插实验,土壤逐渐缺水。与对照组相比,用 0.4 和 250 毫摩尔的乙醇溶液预处理的植物表现出较慢的土壤透水量(FTSW)消耗速度。虽然 0.4 毫摩尔和 250 毫摩尔 EtOH 在早期会降低蒸腾作用,但经过 10 天的土壤水分耗竭后,这些经过 EtOH 预处理的植物的叶片蒸腾作用仍高于对照组。蒸腾作用对 FTSW 的反应受 EtOH 施用的影响。EtOH预处理限制了植物叶片的扩展,但没有增加叶片的衰老,同时增加了根的干重。葡萄对EtOH预处理的反应遵循典型的激素作用曲线。RNA-seq数据揭示了与这种EtOH引导效应相关的转录本。这些结果表明,EtOH 能提高葡萄树对干旱的适应能力,从而为容易因气候变化而出现严重缺水的葡萄酒产区带来潜在的节水效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Transcriptome and Metabolome Analyses Reveal the Mechanism Regulating Bulbil Initiation and Development in Cystopteris chinensis Directional Cell-to-cell Transport in Plant Roots Bundle sheath cell-dependent chloroplast movement in mesophyll cells of C4 plants analyzed using live leaf-section imaging Stigma longevity is not a major limiting factor in hybrid wheat seed production Genotype by environment interactions in gene regulation underlie the response to soil drying in the model grass Brachypodium distachyon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1