Mature leaves produce a multi-layered wound periderm by integrating phytohormone signaling with ATML1-mediated epidermal specification

Jung-Min Lee, Woo-Taek Jeon, Minsoo Han, Myung Kwon, Kyungyoon Kim, Hoon Jung, Geon Heo, Sujeong Je, Yasuyo Yamaoka, Yuree Lee
{"title":"Mature leaves produce a multi-layered wound periderm by integrating phytohormone signaling with ATML1-mediated epidermal specification","authors":"Jung-Min Lee, Woo-Taek Jeon, Minsoo Han, Myung Kwon, Kyungyoon Kim, Hoon Jung, Geon Heo, Sujeong Je, Yasuyo Yamaoka, Yuree Lee","doi":"10.1101/2024.09.02.607870","DOIUrl":null,"url":null,"abstract":"The epidermis of plants forms a protective barrier against various stress, but how breaches in the epidermis are repaired is not well understood. Here, we investigated wound healing in the mature leaves of Arabidopsis. We discover a novel type of wound periderm comprising a multi-layered ligno-suberized barrier covered with cuticular wax, which is formed by mesophyll cells that adopt an epidermal fate. Mesophyll cells of protective layer 1 (P1), just beneath the wound, transition into epidermal cells, which seal the wound by depositing cuticle. As P1 undergoes cell death, protective layer 2 (P2), which underlies P1, takes the place of P1 and undergoes ligno-suberization. This multi-layered periderm involves integration of ethylene and jasmonic acid signaling with ATML1, a key transcription factor in epidermal specification, to coordinate cell layer-specific functions. This novel wound periderm also occurs in the leaves of tobacco and Capsella, suggesting it is a widespread phenomenon.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.02.607870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The epidermis of plants forms a protective barrier against various stress, but how breaches in the epidermis are repaired is not well understood. Here, we investigated wound healing in the mature leaves of Arabidopsis. We discover a novel type of wound periderm comprising a multi-layered ligno-suberized barrier covered with cuticular wax, which is formed by mesophyll cells that adopt an epidermal fate. Mesophyll cells of protective layer 1 (P1), just beneath the wound, transition into epidermal cells, which seal the wound by depositing cuticle. As P1 undergoes cell death, protective layer 2 (P2), which underlies P1, takes the place of P1 and undergoes ligno-suberization. This multi-layered periderm involves integration of ethylene and jasmonic acid signaling with ATML1, a key transcription factor in epidermal specification, to coordinate cell layer-specific functions. This novel wound periderm also occurs in the leaves of tobacco and Capsella, suggesting it is a widespread phenomenon.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
成熟叶片通过将植物激素信号与 ATML1 介导的表皮规范结合起来,产生多层伤口外皮
植物的表皮是抵御各种压力的保护屏障,但表皮的破损是如何修复的还不十分清楚。在这里,我们研究了拟南芥成熟叶片的伤口愈合。我们发现了一种新型的伤口表皮,它由多层木质化屏障组成,表面覆盖着角质蜡,由采用表皮命运的叶肉细胞形成。位于伤口下方的保护层 1(P1)的中叶细胞转变为表皮细胞,后者通过沉积角质层来密封伤口。随着 P1 层细胞的死亡,位于 P1 层下面的保护层 2(P2)取代了 P1 层,并发生木质化。这种多层外皮涉及乙烯和茉莉酸信号与 ATML1(表皮规范的关键转录因子)的整合,以协调细胞层特异性功能。这种新型的伤口表皮也出现在烟草和帽状花的叶片中,表明这是一种普遍现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Transcriptome and Metabolome Analyses Reveal the Mechanism Regulating Bulbil Initiation and Development in Cystopteris chinensis Directional Cell-to-cell Transport in Plant Roots Bundle sheath cell-dependent chloroplast movement in mesophyll cells of C4 plants analyzed using live leaf-section imaging Stigma longevity is not a major limiting factor in hybrid wheat seed production Genotype by environment interactions in gene regulation underlie the response to soil drying in the model grass Brachypodium distachyon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1