Natural genetic and transcriptomic variation in photosynthesis associated pathways contribute to adaptive traits variation in worldwide Arabidopsis thaliana population
Wei Liu, Jing Hou, Li Liu, Mengyu Lei, Yu Han, Mingjia Zhu, Wenjia Zhang, Ran Hao, Yan Ji, Huan Si, Jianquan Liu, Yanjun Zan
{"title":"Natural genetic and transcriptomic variation in photosynthesis associated pathways contribute to adaptive traits variation in worldwide Arabidopsis thaliana population","authors":"Wei Liu, Jing Hou, Li Liu, Mengyu Lei, Yu Han, Mingjia Zhu, Wenjia Zhang, Ran Hao, Yan Ji, Huan Si, Jianquan Liu, Yanjun Zan","doi":"10.1101/2024.08.29.610265","DOIUrl":null,"url":null,"abstract":"Photosynthesis is the most important reaction underlying carbon fixation. Despite its potential in boosting carbon assimilation, nature variations underlying genes in photosynthesis pathway and their role in adaptive traits variation remains elusive. In this study, we investigated the genetic, transcriptomic variation of 1103 genes in photosynthesis associated pathways, including 82 photosynthesis core genes, 24 plastid-encoded RNA polymerase related genes, 2 nucleus-encoded RNA polymerase-related genes, 34 photomorphogenesis-related genes, 40 genes involved in transcription and translation (TAC) and 938 other nuclear-encoded chloroplast-targeted genes. By de novo assembling the chloroplast genomes of 28 representative accessions and leveraging whole-genome, transcriptome sequencing data from the 1001 Genome Project, we revealed extensive natural genetic and transcriptome variations these genes in worldwide Arabidopsis thaliana population. 34.0% of them were identified with regulatory variations in expression quantitative locus mapping (eQTL) mapping, including key components of Rubisco (RBCS1B, RBCS2B), and Rubisco activase (RCA). Genome-wide and transcriptome-wide association analysis (GWAS/TWAS) showed that these genetic and transcriptomic variations made considerable contribution to variation of adaptive traits. Overall, our study provides insight into the natural genetic variation of these genes among worldwide Arabidopsis thaliana accessions and their role in complex traits variation and adaptation.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.29.610265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Photosynthesis is the most important reaction underlying carbon fixation. Despite its potential in boosting carbon assimilation, nature variations underlying genes in photosynthesis pathway and their role in adaptive traits variation remains elusive. In this study, we investigated the genetic, transcriptomic variation of 1103 genes in photosynthesis associated pathways, including 82 photosynthesis core genes, 24 plastid-encoded RNA polymerase related genes, 2 nucleus-encoded RNA polymerase-related genes, 34 photomorphogenesis-related genes, 40 genes involved in transcription and translation (TAC) and 938 other nuclear-encoded chloroplast-targeted genes. By de novo assembling the chloroplast genomes of 28 representative accessions and leveraging whole-genome, transcriptome sequencing data from the 1001 Genome Project, we revealed extensive natural genetic and transcriptome variations these genes in worldwide Arabidopsis thaliana population. 34.0% of them were identified with regulatory variations in expression quantitative locus mapping (eQTL) mapping, including key components of Rubisco (RBCS1B, RBCS2B), and Rubisco activase (RCA). Genome-wide and transcriptome-wide association analysis (GWAS/TWAS) showed that these genetic and transcriptomic variations made considerable contribution to variation of adaptive traits. Overall, our study provides insight into the natural genetic variation of these genes among worldwide Arabidopsis thaliana accessions and their role in complex traits variation and adaptation.