Human Motion Synthesis_ A Diffusion Approach for Motion Stitching and In-Betweening

Michael Adewole, Oluwaseyi Giwa, Favour Nerrise, Martins Osifeko, Ajibola Oyedeji
{"title":"Human Motion Synthesis_ A Diffusion Approach for Motion Stitching and In-Betweening","authors":"Michael Adewole, Oluwaseyi Giwa, Favour Nerrise, Martins Osifeko, Ajibola Oyedeji","doi":"arxiv-2409.06791","DOIUrl":null,"url":null,"abstract":"Human motion generation is an important area of research in many fields. In\nthis work, we tackle the problem of motion stitching and in-betweening. Current\nmethods either require manual efforts, or are incapable of handling longer\nsequences. To address these challenges, we propose a diffusion model with a\ntransformer-based denoiser to generate realistic human motion. Our method\ndemonstrated strong performance in generating in-betweening sequences,\ntransforming a variable number of input poses into smooth and realistic motion\nsequences consisting of 75 frames at 15 fps, resulting in a total duration of 5\nseconds. We present the performance evaluation of our method using quantitative\nmetrics such as Frechet Inception Distance (FID), Diversity, and Multimodality,\nalong with visual assessments of the generated outputs.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human motion generation is an important area of research in many fields. In this work, we tackle the problem of motion stitching and in-betweening. Current methods either require manual efforts, or are incapable of handling longer sequences. To address these challenges, we propose a diffusion model with a transformer-based denoiser to generate realistic human motion. Our method demonstrated strong performance in generating in-betweening sequences, transforming a variable number of input poses into smooth and realistic motion sequences consisting of 75 frames at 15 fps, resulting in a total duration of 5 seconds. We present the performance evaluation of our method using quantitative metrics such as Frechet Inception Distance (FID), Diversity, and Multimodality, along with visual assessments of the generated outputs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人体运动合成_用于运动缝合和夹缝的扩散方法
人体运动生成是许多领域的一个重要研究领域。在这项工作中,我们解决了运动拼接和中间处理的问题。目前的方法要么需要人工操作,要么无法处理较长的序列。为了应对这些挑战,我们提出了一种扩散模型,并使用基于变换器的去噪器来生成逼真的人体运动。我们的方法在生成中间序列方面表现出很强的性能,可将不同数量的输入姿势转换成平滑逼真的运动序列,包括 75 帧、15 帧/秒,总时长为 5 秒。我们使用弗雷谢特起始距离(FID)、多样性和多模态等定量指标对我们的方法进行了性能评估,并对生成的输出结果进行了视觉评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1