Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing

Wenyuan Zhang, Jiawei Sheng, Shuaiyi Nie, Zefeng Zhang, Xinghua Zhang, Yongquan He, Tingwen Liu
{"title":"Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing","authors":"Wenyuan Zhang, Jiawei Sheng, Shuaiyi Nie, Zefeng Zhang, Xinghua Zhang, Yongquan He, Tingwen Liu","doi":"arxiv-2409.11726","DOIUrl":null,"url":null,"abstract":"Large language model (LLM) role-playing has gained widespread attention,\nwhere the authentic character knowledge is crucial for constructing realistic\nLLM role-playing agents. However, existing works usually overlook the\nexploration of LLMs' ability to detect characters' known knowledge errors (KKE)\nand unknown knowledge errors (UKE) while playing roles, which would lead to\nlow-quality automatic construction of character trainable corpus. In this\npaper, we propose a probing dataset to evaluate LLMs' ability to detect errors\nin KKE and UKE. The results indicate that even the latest LLMs struggle to\neffectively detect these two types of errors, especially when it comes to\nfamiliar knowledge. We experimented with various reasoning strategies and\npropose an agent-based reasoning method, Self-Recollection and Self-Doubt\n(S2RD), to further explore the potential for improving error detection\ncapabilities. Experiments show that our method effectively improves the LLMs'\nability to detect error character knowledge, but it remains an issue that\nrequires ongoing attention.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large language model (LLM) role-playing has gained widespread attention, where the authentic character knowledge is crucial for constructing realistic LLM role-playing agents. However, existing works usually overlook the exploration of LLMs' ability to detect characters' known knowledge errors (KKE) and unknown knowledge errors (UKE) while playing roles, which would lead to low-quality automatic construction of character trainable corpus. In this paper, we propose a probing dataset to evaluate LLMs' ability to detect errors in KKE and UKE. The results indicate that even the latest LLMs struggle to effectively detect these two types of errors, especially when it comes to familiar knowledge. We experimented with various reasoning strategies and propose an agent-based reasoning method, Self-Recollection and Self-Doubt (S2RD), to further explore the potential for improving error detection capabilities. Experiments show that our method effectively improves the LLMs' ability to detect error character knowledge, but it remains an issue that requires ongoing attention.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示在 LLM 角色扮演中检测角色知识错误所面临的挑战
大语言模型(LLM)角色扮演已受到广泛关注,其中真实的角色知识对于构建逼真的 LLM 角色扮演代理至关重要。然而,现有研究通常忽视了对 LLM 检测角色扮演过程中已知知识错误(KKE)和未知知识错误(UKE)能力的探索,这将导致自动构建角色可训练语料库的质量低下。在本文中,我们提出了一个探测数据集来评估 LLMs 检测 KKE 和 UKE 中错误的能力。结果表明,即使是最新的 LLM 也很难有效地检测出这两类错误,尤其是在涉及熟悉的知识时。我们尝试了各种推理策略,并提出了一种基于代理的推理方法--自我回忆与自我怀疑(S2RD),以进一步探索提高错误检测能力的潜力。实验表明,我们的方法有效地提高了 LLMs 检测错误特征知识的能力,但这仍然是一个需要持续关注的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1