Bridging Quantitative and Qualitative Methods for Visualization Research: A Data/Semantics Perspective in Light of Advanced AI

Daniel Weiskopf
{"title":"Bridging Quantitative and Qualitative Methods for Visualization Research: A Data/Semantics Perspective in Light of Advanced AI","authors":"Daniel Weiskopf","doi":"arxiv-2409.07250","DOIUrl":null,"url":null,"abstract":"This paper revisits the role of quantitative and qualitative methods in\nvisualization research in the context of advancements in artificial\nintelligence (AI). The focus is on how we can bridge between the different\nmethods in an integrated process of analyzing user study data. To this end, a\nprocess model of - potentially iterated - semantic enrichment and\ntransformation of data is proposed. This joint perspective of data and\nsemantics facilitates the integration of quantitative and qualitative methods.\nThe model is motivated by examples of own prior work, especially in the area of\neye tracking user studies and coding data-rich observations. Finally, there is\na discussion of open issues and research opportunities in the interplay between\nAI, human analyst, and qualitative and quantitative methods for visualization\nresearch.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper revisits the role of quantitative and qualitative methods in visualization research in the context of advancements in artificial intelligence (AI). The focus is on how we can bridge between the different methods in an integrated process of analyzing user study data. To this end, a process model of - potentially iterated - semantic enrichment and transformation of data is proposed. This joint perspective of data and semantics facilitates the integration of quantitative and qualitative methods. The model is motivated by examples of own prior work, especially in the area of eye tracking user studies and coding data-rich observations. Finally, there is a discussion of open issues and research opportunities in the interplay between AI, human analyst, and qualitative and quantitative methods for visualization research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在可视化研究中衔接定量和定性方法:从数据/符号学角度看先进的人工智能
本文以人工智能(AI)的发展为背景,重新审视了定量和定性方法在可视化研究中的作用。重点在于我们如何在分析用户研究数据的综合过程中,在不同方法之间架起一座桥梁。为此,我们提出了一个可能反复进行的语义丰富和数据转换过程模型。这一数据和语义的联合视角有助于定量和定性方法的整合。该模型的灵感来源于我们之前的工作实例,尤其是在眼睛跟踪用户研究和对数据丰富的观察结果进行编码方面。最后,还讨论了可视化研究中人工智能、人类分析师以及定性和定量方法之间相互作用的公开问题和研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1