Optical Neural Engine for Solving Scientific Partial Differential Equations

Yingheng TangJackie, Ruiyang ChenJackie, Minhan LouJackie, Jichao FanJackie, Cunxi YuJackie, Andy NonakaJackie, ZhiJackie, Yao, Weilu Gao
{"title":"Optical Neural Engine for Solving Scientific Partial Differential Equations","authors":"Yingheng TangJackie, Ruiyang ChenJackie, Minhan LouJackie, Jichao FanJackie, Cunxi YuJackie, Andy NonakaJackie, ZhiJackie, Yao, Weilu Gao","doi":"arxiv-2409.06234","DOIUrl":null,"url":null,"abstract":"Solving partial differential equations (PDEs) is the cornerstone of\nscientific research and development. Data-driven machine learning (ML)\napproaches are emerging to accelerate time-consuming and computation-intensive\nnumerical simulations of PDEs. Although optical systems offer high-throughput\nand energy-efficient ML hardware, there is no demonstration of utilizing them\nfor solving PDEs. Here, we present an optical neural engine (ONE) architecture\ncombining diffractive optical neural networks for Fourier space processing and\noptical crossbar structures for real space processing to solve time-dependent\nand time-independent PDEs in diverse disciplines, including Darcy flow\nequation, the magnetostatic Poisson equation in demagnetization, the\nNavier-Stokes equation in incompressible fluid, Maxwell's equations in\nnanophotonic metasurfaces, and coupled PDEs in a multiphysics system. We\nnumerically and experimentally demonstrate the capability of the ONE\narchitecture, which not only leverages the advantages of high-performance\ndual-space processing for outperforming traditional PDE solvers and being\ncomparable with state-of-the-art ML models but also can be implemented using\noptical computing hardware with unique features of low-energy and highly\nparallel constant-time processing irrespective of model scales and real-time\nreconfigurability for tackling multiple tasks with the same architecture. The\ndemonstrated architecture offers a versatile and powerful platform for\nlarge-scale scientific and engineering computations.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solving partial differential equations (PDEs) is the cornerstone of scientific research and development. Data-driven machine learning (ML) approaches are emerging to accelerate time-consuming and computation-intensive numerical simulations of PDEs. Although optical systems offer high-throughput and energy-efficient ML hardware, there is no demonstration of utilizing them for solving PDEs. Here, we present an optical neural engine (ONE) architecture combining diffractive optical neural networks for Fourier space processing and optical crossbar structures for real space processing to solve time-dependent and time-independent PDEs in diverse disciplines, including Darcy flow equation, the magnetostatic Poisson equation in demagnetization, the Navier-Stokes equation in incompressible fluid, Maxwell's equations in nanophotonic metasurfaces, and coupled PDEs in a multiphysics system. We numerically and experimentally demonstrate the capability of the ONE architecture, which not only leverages the advantages of high-performance dual-space processing for outperforming traditional PDE solvers and being comparable with state-of-the-art ML models but also can be implemented using optical computing hardware with unique features of low-energy and highly parallel constant-time processing irrespective of model scales and real-time reconfigurability for tackling multiple tasks with the same architecture. The demonstrated architecture offers a versatile and powerful platform for large-scale scientific and engineering computations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于求解科学偏微分方程的光学神经引擎
求解偏微分方程 (PDE) 是科学研究与发展的基石。数据驱动的机器学习(ML)方法正在兴起,以加速耗时且计算密集的偏微分方程数值模拟。虽然光学系统提供了高吞吐量和高能效的 ML 硬件,但目前还没有利用它们求解 PDE 的演示。在这里,我们介绍了一种光学神经引擎(ONE)架构,它将用于傅立叶空间处理的衍射光学神经网络和用于实空间处理的光学横杆结构结合在一起,用于求解不同学科中与时间相关和与时间无关的 PDEs,包括达西流方程、去磁中的磁静态泊松方程、不可压缩流体中的纳维尔-斯托克斯方程、非光子元表面中的麦克斯韦方程以及多物理场系统中的耦合 PDEs。ONE架构不仅利用了高性能超时空处理的优势,超越了传统的PDE求解器,可与最先进的ML模型相媲美,而且可以使用光学计算硬件实现,具有不受模型规模限制的低能耗、高并行恒定时间处理的独特功能,以及使用同一架构处理多个任务的实时可重新配置性。所展示的架构为大规模科学和工程计算提供了一个多功能、功能强大的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical Label-Free Microscopy Characterization of Dielectric Nanoparticles Enwrapped Perylene Bisimide Enables Room Temperature Polariton Lasing and Photonic Lattices Chiral patterning of rough surfaces with vortex laser beams: from structured polarization to twisted forces Scaling of pseudospectra in exponentially sensitive lattices Surface Phonon Polariton Ellipsometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1