Effect of side chain modification on edge-on oriented dithienobenzodithiophene-based non-fullerene acceptors for organic solar cells

IF 2.7 3区 化学 Q2 POLYMER SCIENCE Journal of Applied Polymer Science Pub Date : 2024-09-05 DOI:10.1002/app.56216
Da In Kim, Kyungsik Kim, Byoungwook Park, Jehan Kim, Yun-Hi Kim, Kwanghee Lee, Soon-Ki Kwon, Jinho Lee
{"title":"Effect of side chain modification on edge-on oriented dithienobenzodithiophene-based non-fullerene acceptors for organic solar cells","authors":"Da In Kim,&nbsp;Kyungsik Kim,&nbsp;Byoungwook Park,&nbsp;Jehan Kim,&nbsp;Yun-Hi Kim,&nbsp;Kwanghee Lee,&nbsp;Soon-Ki Kwon,&nbsp;Jinho Lee","doi":"10.1002/app.56216","DOIUrl":null,"url":null,"abstract":"<p>Two non-fullerene acceptors (NFAs), DTBDT-ICN and DTBDT-SEH, based on dithienobenzodithiophene (DTBDT) and a 2-(3-oxo-2,3-dihydroinden-1-ylidene) malononitrile (IC) with different side chains of alkylthienyl and alkylthio-thienyl, respectively, were designed and used as electron acceptors in organic solar cells (OSCs). Both NFAs provide suitable energy level configurations that ensure efficient charge transfer with the donor polymer PBDB-T, as confirmed by significant photoluminescence reduction in the blend films. However, due to the high planarity together with strong π-π stacking interactions, the DTBDT-ICN presented significant aggregation and phase separation in the blend films, leading to suboptimal charge generation. In addition, grazing incidence wide-angle x-ray scattering measurements revealed a predominance of edge-on molecular orientations, which are unfavorable for vertical charge transport. On the other hand, DTBDT-SEH exhibited less pronounced molecular aggregation and edge-on orientation properties compared to DTBDT-ICN, resulting in improved carrier mobility (<i>μ</i><sub><i>e</i></sub> of 3.86 × 10<sup>−6</sup> compared to 7.59 × 10<sup>−7</sup>) and mitigated recombination losses (1.19 kT/q compared to 1.21 kT/q) in OSC devices. The improved morphological features of PBDB-T:DTBDT-SEH led to a high power conversion efficiency of 3.31%, which is three times higher than that of PBDB-T:DTBDT-ICN-based devices (1.55%). Furthermore, paired with the high performance polymer PM6, PM6:DTBDT-SEH demonstrated an enhanced efficiency, reaching 7.03%.</p>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/app.56216","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56216","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Two non-fullerene acceptors (NFAs), DTBDT-ICN and DTBDT-SEH, based on dithienobenzodithiophene (DTBDT) and a 2-(3-oxo-2,3-dihydroinden-1-ylidene) malononitrile (IC) with different side chains of alkylthienyl and alkylthio-thienyl, respectively, were designed and used as electron acceptors in organic solar cells (OSCs). Both NFAs provide suitable energy level configurations that ensure efficient charge transfer with the donor polymer PBDB-T, as confirmed by significant photoluminescence reduction in the blend films. However, due to the high planarity together with strong π-π stacking interactions, the DTBDT-ICN presented significant aggregation and phase separation in the blend films, leading to suboptimal charge generation. In addition, grazing incidence wide-angle x-ray scattering measurements revealed a predominance of edge-on molecular orientations, which are unfavorable for vertical charge transport. On the other hand, DTBDT-SEH exhibited less pronounced molecular aggregation and edge-on orientation properties compared to DTBDT-ICN, resulting in improved carrier mobility (μe of 3.86 × 10−6 compared to 7.59 × 10−7) and mitigated recombination losses (1.19 kT/q compared to 1.21 kT/q) in OSC devices. The improved morphological features of PBDB-T:DTBDT-SEH led to a high power conversion efficiency of 3.31%, which is three times higher than that of PBDB-T:DTBDT-ICN-based devices (1.55%). Furthermore, paired with the high performance polymer PM6, PM6:DTBDT-SEH demonstrated an enhanced efficiency, reaching 7.03%.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
侧链修饰对用于有机太阳能电池的边缘定向二噻吩基二苯并二噻吩非富勒烯受体的影响
我们设计了两种非富勒烯受体(NFAs)--DTBDT-ICN 和 DTBDT-SEH,它们分别基于二噻吩基二苯并二噻吩(DTBDT)和具有不同烷基噻吩基和烷基硫代噻吩基侧链的 2-(3-氧代-2,3-二氢茚-1-亚基)丙二腈(IC),并将其用作有机太阳能电池(OSCs)中的电子受体。两种 NFA 都能提供合适的能级配置,确保与供体聚合物 PBDB-T 进行有效的电荷转移,这一点已通过共混薄膜中显著的光致发光减少得到证实。然而,由于 DTBDT-ICN 具有较高的平面度以及较强的 π-π 堆叠相互作用,因此在混合薄膜中出现了明显的聚集和相分离现象,导致电荷生成效果不理想。此外,掠入射广角 X 射线散射测量结果表明,边沿分子取向占主导地位,不利于电荷的垂直传输。另一方面,与 DTBDT-ICN 相比,DTBDT-SEH 表现出较不明显的分子聚集和边缘取向特性,从而提高了 OSC 器件中的载流子迁移率(μe 为 3.86 × 10-6 而 DTBDT-ICN 为 7.59 × 10-7),并降低了重组损耗(1.19 kT/q 而 DTBDT-ICN 为 1.21 kT/q)。PBDB-T:DTBDT-SEH 的形态特征得到改善后,功率转换效率高达 3.31%,是基于 PBDB-T:DTBDT-ICN 器件(1.55%)的三倍。此外,与高性能聚合物 PM6 搭配使用时,PM6:DTBDT-SEH 的效率更高,达到 7.03%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
期刊最新文献
Editorial Board, Aims & Scope, Table of Contents Editorial Board, Aims & Scope, Table of Contents Editorial Board, Aims & Scope, Table of Contents Editorial Board, Aims & Scope, Table of Contents Cover Image, Volume 141, Issue 43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1