Encapsulating montmorillonite and ammonium polyphosphate in one polyurea microcapsule to improve flame-retardant and mechanical properties of polypropylene composites
{"title":"Encapsulating montmorillonite and ammonium polyphosphate in one polyurea microcapsule to improve flame-retardant and mechanical properties of polypropylene composites","authors":"Licong Jiang, Liyuan Ren, Yongsheng Zhang, Weiliang Zhou, Xinlong Wang, Leqin Xiao","doi":"10.1002/app.56214","DOIUrl":null,"url":null,"abstract":"<p>Ammonium polyphosphate (APP) and montmorillonite (MMT) have been widely used in the flame-retardant of polypropylene (PP), but the low synergistic flame-retardant efficiency and their poor compatibility with PP matrix need to be greatly improved. In this work, APP and MMT were encapsulated in the one microcapsule (PU@A-M) at the determined optimal ratio through the “bridging” reactions of diethylenetriamine (DETA) with APP and MMT. Compared with the PP/A + M composites with the physical mixture of APP and MMT, the limiting oxygen index, peak of heat release rate, total heat release, and total smoke production of PP/PU@A-M were decreased by 5.7%, 48.8%, 3.1%, and 20%, respectively. The well-dispersed PU@A-M with charring-forming agent (CFA) generated continuous and compact char layers with C<span></span>O<span></span>P, C<span></span>O<span></span>Si, and Si<span></span>O<span></span>P crosslinking structure. Furthermore, the tensile strength and elongation at break of PP/PU@A-M were enhanced by 4.8% and 36.9%, respectively, as compared with PP/A + M because of good dispersibility and compatibility of PU@A-M in PP matrix.</p>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56214","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonium polyphosphate (APP) and montmorillonite (MMT) have been widely used in the flame-retardant of polypropylene (PP), but the low synergistic flame-retardant efficiency and their poor compatibility with PP matrix need to be greatly improved. In this work, APP and MMT were encapsulated in the one microcapsule (PU@A-M) at the determined optimal ratio through the “bridging” reactions of diethylenetriamine (DETA) with APP and MMT. Compared with the PP/A + M composites with the physical mixture of APP and MMT, the limiting oxygen index, peak of heat release rate, total heat release, and total smoke production of PP/PU@A-M were decreased by 5.7%, 48.8%, 3.1%, and 20%, respectively. The well-dispersed PU@A-M with charring-forming agent (CFA) generated continuous and compact char layers with COP, COSi, and SiOP crosslinking structure. Furthermore, the tensile strength and elongation at break of PP/PU@A-M were enhanced by 4.8% and 36.9%, respectively, as compared with PP/A + M because of good dispersibility and compatibility of PU@A-M in PP matrix.
期刊介绍:
The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.