DEPLOYERS: An agent based modeling tool for multi country real world data

Martin Jaraiz, Ruth Pinacho
{"title":"DEPLOYERS: An agent based modeling tool for multi country real world data","authors":"Martin Jaraiz, Ruth Pinacho","doi":"arxiv-2409.04876","DOIUrl":null,"url":null,"abstract":"We present recent progress in the design and development of DEPLOYERS, an\nagent-based macroeconomics modeling (ABM) framework, capable to deploy and\nsimulate a full economic system (individual workers, goods and services firms,\ngovernment, central and private banks, financial market, external sectors)\nwhose structure and activity analysis reproduce the desired calibration data,\nthat can be, for example a Social Accounting Matrix (SAM) or a Supply-Use Table\n(SUT) or an Input-Output Table (IOT).Here we extend our previous work to a\nmulti-country version and show an example using data from a 46-countries\n64-sectors FIGARO Inter-Country IOT. The simulation of each country runs on a\nseparate thread or CPU core to simulate the activity of one step (month, week,\nor day) and then interacts (updates imports, exports, transfer) with that\ncountry's foreign partners, and proceeds to the next step. This interaction can\nbe chosen to be aggregated (a single row and column IO account) or\ndisaggregated (64 rows and columns) with each partner. A typical run simulates\nthousands of individuals and firms engaged in their monthly activity and then\nrecords the results, much like a survey of the country's economic system. This\ndata can then be subjected to, for example, an Input-Output analysis to find\nout the sources of observed stylized effects as a function of time in the\ndetailed and realistic modeling environment that can be easily implemented in\nan ABM framework.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"178 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present recent progress in the design and development of DEPLOYERS, an agent-based macroeconomics modeling (ABM) framework, capable to deploy and simulate a full economic system (individual workers, goods and services firms, government, central and private banks, financial market, external sectors) whose structure and activity analysis reproduce the desired calibration data, that can be, for example a Social Accounting Matrix (SAM) or a Supply-Use Table (SUT) or an Input-Output Table (IOT).Here we extend our previous work to a multi-country version and show an example using data from a 46-countries 64-sectors FIGARO Inter-Country IOT. The simulation of each country runs on a separate thread or CPU core to simulate the activity of one step (month, week, or day) and then interacts (updates imports, exports, transfer) with that country's foreign partners, and proceeds to the next step. This interaction can be chosen to be aggregated (a single row and column IO account) or disaggregated (64 rows and columns) with each partner. A typical run simulates thousands of individuals and firms engaged in their monthly activity and then records the results, much like a survey of the country's economic system. This data can then be subjected to, for example, an Input-Output analysis to find out the sources of observed stylized effects as a function of time in the detailed and realistic modeling environment that can be easily implemented in an ABM framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DEPLOYERS:基于代理的多国真实世界数据建模工具
DEPLOYERS 是一个基于代理的宏观经济模型(ABM)框架,能够部署和模拟一个完整的经济系统(个体劳动者、商品和服务企业、政府、中央和私人银行、金融市场、外部部门),其结构和活动分析再现了所需的校准数据,例如社会核算矩阵(SAM)、供应-使用表(SUT)或投入-产出表(IOT)。在此,我们将之前的工作扩展到多国版本,并以 46 个国家 64 个行业的 FIGARO 国家间 IOT 数据为例进行说明。每个国家的模拟都在单独的线程或 CPU 内核上运行,模拟一个步骤(月、周或日)的活动,然后与该国的外国合作伙伴进行交互(更新进口、出口、转移),并进入下一个步骤。这种互动可以选择与每个合作伙伴的汇总(单行单列 IO 账户)或分类(64 行 64 列)。一次典型的运行模拟数千家个人和公司参与其每月活动,然后记录结果,就像对国家经济体系进行调查一样。然后,可以对这些数据进行投入产出分析等,以找出在详细和现实的建模环境中观察到的风格化效应的来源,这些效应与时间的函数关系可以很容易地在 ABM 框架中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1