Uniform Estimation and Inference for Nonparametric Partitioning-Based M-Estimators

Matias D. Cattaneo, Yingjie Feng, Boris Shigida
{"title":"Uniform Estimation and Inference for Nonparametric Partitioning-Based M-Estimators","authors":"Matias D. Cattaneo, Yingjie Feng, Boris Shigida","doi":"arxiv-2409.05715","DOIUrl":null,"url":null,"abstract":"This paper presents uniform estimation and inference theory for a large class\nof nonparametric partitioning-based M-estimators. The main theoretical results\ninclude: (i) uniform consistency for convex and non-convex objective functions;\n(ii) optimal uniform Bahadur representations; (iii) optimal uniform (and mean\nsquare) convergence rates; (iv) valid strong approximations and feasible\nuniform inference methods; and (v) extensions to functional transformations of\nunderlying estimators. Uniformity is established over both the evaluation point\nof the nonparametric functional parameter and a Euclidean parameter indexing\nthe class of loss functions. The results also account explicitly for the\nsmoothness degree of the loss function (if any), and allow for a possibly\nnon-identity (inverse) link function. We illustrate the main theoretical and\nmethodological results with four substantive applications: quantile regression,\ndistribution regression, $L_p$ regression, and Logistic regression; many other\npossibly non-smooth, nonlinear, generalized, robust M-estimation settings are\ncovered by our theoretical results. We provide detailed comparisons with the\nexisting literature and demonstrate substantive improvements: we achieve the\nbest (in some cases optimal) known results under improved (in some cases\nminimal) requirements in terms of regularity conditions and side rate\nrestrictions. The supplemental appendix reports other technical results that\nmay be of independent interest.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents uniform estimation and inference theory for a large class of nonparametric partitioning-based M-estimators. The main theoretical results include: (i) uniform consistency for convex and non-convex objective functions; (ii) optimal uniform Bahadur representations; (iii) optimal uniform (and mean square) convergence rates; (iv) valid strong approximations and feasible uniform inference methods; and (v) extensions to functional transformations of underlying estimators. Uniformity is established over both the evaluation point of the nonparametric functional parameter and a Euclidean parameter indexing the class of loss functions. The results also account explicitly for the smoothness degree of the loss function (if any), and allow for a possibly non-identity (inverse) link function. We illustrate the main theoretical and methodological results with four substantive applications: quantile regression, distribution regression, $L_p$ regression, and Logistic regression; many other possibly non-smooth, nonlinear, generalized, robust M-estimation settings are covered by our theoretical results. We provide detailed comparisons with the existing literature and demonstrate substantive improvements: we achieve the best (in some cases optimal) known results under improved (in some cases minimal) requirements in terms of regularity conditions and side rate restrictions. The supplemental appendix reports other technical results that may be of independent interest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非参数划分的 M 估计器的统一估计与推理
本文介绍了一大类基于非参数分区的 M-估计器的统一估计和推理理论。主要理论结果包括(i) 凸和非凸目标函数的均匀一致性;(ii) 最佳均匀巴哈多表示;(iii) 最佳均匀(和均方)收敛率;(iv) 有效的强近似和可行的均匀推理方法;以及 (v) 基础估计器函数变换的扩展。在非参数函数参数的评估点和损失函数类欧几里得参数上都建立了均匀性。结果还明确考虑了损失函数的平滑度(如果有的话),并允许可能存在非同一(反向)链接函数。我们用四个实际应用来说明主要的理论和方法结果:量化回归、分布回归、$L_p$ 回归和逻辑回归;我们的理论结果还涵盖了许多其他可能的非光滑、非线性、广义、稳健 M-estimation 设置。我们提供了与现有文献的详细比较,并展示了实质性的改进:在正则性条件和边际率限制方面,我们在改进(在某些情况下是最小)的要求下取得了已知的最佳(在某些情况下是最优)结果。补充附录还报告了其他可能会引起独立兴趣的技术结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1